11 resultados para High mechanical strength

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose – This research deals with a new kind of nanopigment, obtained from the combination of organic dyes and layered nanoclays, that the authors call nanoclay-colorant pigment (NCP). Whilst they have already been employed in inks and coatings, to date these nanopigments have not been used as pigments for polymers. The existing lack of knowledge surrounding them must be redressed in order to bridge the gap between current academic studies and commercial exploitation. Therefore, the main purpose of this paper is to examine the hitherto unknown aspects of the NCP, which relate specifically to their applicability as a new type of colorant for polymers. Design/methodology/approach – A blue NCP has been prepared at the laboratory according to the patented method of synthesis (patent WO0104216), using methylene blue and montmorillonite nanoclay. It has then been applied to a thermoplastic polymer (linear low-density polyethylene – LLDPE) to obtain a coloured sample. Furthermore, samples with the same polymer but using conventional blue colorants have been prepared under the same processing conditions. The mechanical, thermal and colorimetric properties of these materials have been compared. Findings – The thermal stability of the sample coloured with NCP is reduced to some extent, while the mechanical strength is slightly increased. Moreover, this sample has better colour performance than the conventionally pigmented samples. Originality/value – In this paper, a blue NCP has been synthesised and successfully employed with polyethylene and the obtained sample shows better colour performance than polyethylene with conventional pigments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both strain and damage sensing properties on carbon nanofiber cement composites (CNFCC) are reported in the present paper. Strain sensing tests were first made on the material’s elastic range. The applied loading levels have been previously calculated from mechanical strength tests. The effect of several variables on the strain-sensing function was studied, e.g. cement pastes curing age, current density, loading rate or maximum stress applied. All these parameters were discussed using the gage factor as reference. After this first set of elastic experiments, the same specimens were gradually loaded until material’s failure. At the same time both strain and resistivity were measured. The former was controlled using strain gages, and the latter using a multimeter on a four probe setup. The aim of these tests was to prove the sensitivity of these CNF composites to sense their own damage, i.e. check the possibility of fabricating structural damage sensors with CNFCC’s. All samples with different CNF dosages showed good strain-sensing capacities for curing periods of 28 days. Furthermore, a 2%CNF reinforced cement paste has been sensitive to its own structural damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este trabajo se ha estudiado la evolución de la microestructura, propiedades de durabilidad y resistencias mecánicas de morteros preparados con cementos comerciales, que contienen ceniza volante (entre un 21% y un 35%) y escoria de alto horno (entre un 66% y un 80%), expuestos a tres ambientes, un ambiente óptimo de laboratorio, y dos ambientes representativos del clima Atlántico y Mediterráneo respectivamente. Como referencia de comportamiento, también se ensayaron morteros de cemento Portland. La microestructura se caracterizó mediante porosimetría de intrusión de mercurio. En lo referente a la durabilidad, se estudiaron los coeficientes de absorción capilar y de migración de cloruros en estado no estacionario. También se determinó la resistencia a compresión de los morteros. Los ensayos se realizaron a 7, 28 y 90 días. La principal conclusión alcanzada es que los cementos con cenizas y escorias expuestos a condiciones ambientales representativas de los climas Atlántico y Mediterráneo, pueden desarrollar unas propiedades en servicio adecuadas al cabo de tres meses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A heterofunctional support for enzyme immobilization may be defined as that which possesses several distinct functionalities on its surface able to interact with a protein. We will focus on those supports in which a final covalent attachment between the enzyme and the support is achieved. Heterofunctionality sometimes has been featured in very old immobilization techniques, even though in many instances it has been overlooked, giving rise to some misunderstandings. In this respect, glutaraldehyde-activated supports are the oldest multifunctional supports. Their matrix has primary amino groups, the hydrophobic glutaraldehyde chain, and can covalently react with the primary amino groups of the enzyme. Thus, immobilization may start (first event of the immobilization) via different causes and may involve different positions of the enzyme surface depending on the activation degree and immobilization conditions. Other “classical” heterofunctional supports are epoxy commercial supports consisting of reactive covalent epoxy groups on a hydrophobic matrix. Immobilization is performed at high ionic strength to permit protein adsorption, so that covalent attachment may take place at a later stage. Starting from these old immobilization techniques, tailor-made heterofunctional supports have been designed to permit a stricter control of the enzyme immobilization process. The requirement is to find conditions where the main covalent reactive moieties may have very low reactivity toward the enzyme. In this Review we will discuss the suitable properties of the groups able to give the covalent attachment (intending a multipoint covalent attachment), and the groups able to produce the first enzyme adsorption on the support. Prospects, limitations, and likely pathways for the evolution (e.g., coupling of site-directed mutagenesis and thiol heterofunctional supports of enzyme immobilization on heterofunctional supports) will be discussed in this Review.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porous adsorbents are currently investigated for hydrogen storage application. From a practical point of view, in addition to high porosity developments, high material densities are required, in order to confine as much material as possible in a tank device. In this study, we use different measured sample densities (tap, packing, compacted and monolith) for analyzing the hydrogen adsorption behavior of activated carbon fibres (ACFs) and activated carbon nanofibres (ACNFs) which were prepared by KOH and CO2 activations, respectively. Hydrogen adsorption isotherms are measured for all of the adsorbents at room temperature and under high pressures (up to 20 MPa). The obtained results confirm that (i) gravimetric H2 adsorption is directly related to the porosity of the adsorbent, (ii) volumetric H2 adsorption depends on the adsorbent porosity and importantly also on the material density, (iii) the density of the adsorbent can be improved by packing the original adsorbents under mechanical pressure or synthesizing monoliths from them, (iv) both ways (packing under pressure or preparing monoliths) considerably improve the storage capacity of the starting adsorbents, and (v) the preparation of monoliths, in addition to avoid engineering constrains of packing under mechanical pressure, has the advantage of providing high mechanical resistance and easy handling of the adsorbent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mercury intrusion porosimetry (MIP) has been widely used to evaluate the quality of concrete through the pore size distribution parameters. Two of these parameters are the critical pore diameter (Dcrit) and the percentage of the most interconnected net of pores compared to the total volume of pores. Some researchers consider Dcrit as the diameter obtained from the inflexion point of the cumulative mercury intrusion curve while others consider Dcrit as the diameter obtained from the point of abrupt variation in the same curve. This study aims to analyze two groups of concretes of varying w/c ratios, one cast with pozzolanic cement and another with high initial strength cement, in order to determine which of these diameters feature a better correlation with the quality parameters of the concretes. The concrete quality parameters used for the evaluations were (1) the w/c ratios and (2) chloride diffusion coefficients measured at approximately 90 days. MIP cumulative distributions of the same concretes were also measured at about 90 days, and Dcrit values were determined (1) from the point of abrupt variation and alternatively, (2) from the inflexion point of each of these plots. It was found that Dcrit values measured from the point of abrupt variation were useful indicators of the quality of the concrete, but the Dcrit values based on the inflexion points were not. Hence, it is recommended that Dcrit and the percentage of the most interconnected volume of pores should be obtained considering the point of abrupt variation of the cumulative curve of pore size distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Edible active films based on sodium caseinate (SC) and calcium caseinate (CC) plasticized with glycerol (G) at three different concentrations and carvacrol (CRV) as active agent were prepared by solvent casting. Transparent films were obtained and their surfaces were analysed by optical microscopy and scanning electron microscopy (SEM). The influence of the addition of three different plasticizer concentrations was studied by determining tensile properties, while Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to evaluate the structural and thermal behavior of such films. The addition of glycerol resulted in a reduction in the elastic modulus and tensile strength, while some increase in the elongation at break was observed. In general terms, SC films showed flexibility higher than the corresponding CC counterparts. In addition, the presence of carvacrol caused further improvements in ductile properties suggesting the presence of stronger interactions between the protein matrix and glycerol, as it was also observed in thermal degradation studies. FTIR spectra of all films showed the characteristic bands and peaks corresponding to proteins as well as to primary and secondary alcohols. In summary, the best results regarding mechanical and structural properties for caseinates-based films containing carvacrol were found for the formulations with high glycerol concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, particleboards manufactured with Oceanic Posidonia waste and bonded with cement are investigated. The particleboards are made with 3/1.5/0.5 parts of cement per part of Posidonia waste. The physical properties of bulk density, swelling, surface absorption, and dimensional changes due to relative humidity as well as the mechanical properties of modulus of elasticity, bending strength, surface soundness, perpendicular tensile strength and impact resistance are studied. In terms of the above properties, the best results were obtained for particleboards with high cement content and when the waste “leaves” are treated (crushed) before board fabrication, due to internal changes to the board structure under these conditions. Based on the results of fire tests, the particleboard is non-flammable without any fire-resistant treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work discusses the results from tests which were performed in order to study the effect of high temperatures in the physical and mechanical properties of a calcarenite (San Julian's stone). Samples, previously heated at different temperatures (from 105 °C to 600 °C), were tested. Non-destructive tests (porosity and ultrasonic wave propagation) and destructive tests (uniaxial compressive strength and slake durability test) were performed over available samples. Furthermore, the tests were carried out under different conditions (i.e. air-cooled and water-cooled) in order to study the effect of the fire off method. The results show that uniaxial compressive strength and elastic parameters (i.e. elastic modulus and Poisson's ratio), decrease as the temperature increases for the tested range of temperatures. A reduction of the uniaxial compressive strength up to 35% and 50% is observed in air-cooled and water-cooled samples respectively when the samples are heated to 600 °C. Regarding the Young's modulus, a fall over 75% and 78% in air-cooled and water-cooled samples respectively is observed. Poisson's ratio also declines up to 44% and 68% with the temperature in air-cooled and water-cooled samples respectively. Slake durability index also exhibits a reduction with temperature. Other physical properties, closely related with the mechanical properties of the stone, are porosity, attenuation and propagation velocity of ultrasonic waves in the material. All exhibit considerable changes with temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work results for the flexural strength and the thermal properties of interpenetrated graphite preforms infiltrated with Al-12wt%Si are discussed and compared to those for packed graphite particles. To make this comparison relevant, graphite particles of four sizes in the range 15–124 μm, were obtained by grinding the graphite preform. Effects of the pressure applied to infiltrate the liquid alloy on composite properties were investigated. In spite of the largely different reinforcement volume fractions (90% in volume in the preform and around 50% in particle compacts) most properties are similar. Only the Coefficient of Thermal Expansion is 50% smaller in the preform composites. Thermal conductivity of the preform composites (slightly below 100 W/m K), may be increased by reducing the graphite content, alloying, or increasing the infiltration pressure. The strength of particle composites follows Griffith criterion if the defect size is identified with the particle diameter. On the other hand, the composites strength remains increasing up to unusually high values of the infiltration pressure. This is consistent with the drainage curves measured in this work. Mg and Ti additions are those that produce the most significant improvements in performance. Although extensive development work remains to be done, it may be concluded that both mechanical and thermal properties make these materials suitable for the fabrication of piston engines.