5 resultados para High dynamic range
em Universidad de Alicante
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
En este trabajo se han presentado las características colorimétricas de una pantalla OLED, valorando la luminancia, rango dinámico, constancia de primarios, aditividad y dependencia de canales, además de comprobar si puede aplicarse un método físico de caracterización. También, se ha evaluado la gama de color reproducible por este dispositivo considerando el sólido de color teórico asociado al mismo. Se ha comprobado que esta pantalla OLED presenta una buena constancia de cromaticidad de los primarios, pero un nivel de aditividad bajo, hecho que no garantiza que pueda utilizarse el método de caracterización GOG directamente, sino que tenga que realizarse una modificación para asegurar una buena caracterización. También, se ha comprobado que la gama real de colores es más pequeña que la gama de color teórica obtenida a partir del blanco de la pantalla. No obstante, este trabajo es un estudio preliminar que debería completarse con el estudio de diferentes dispositivos basados en tecnología OLED con el fin de conocer adecuadamente sus propiedades colorimétricas.
Resumo:
Object tracking with subpixel accuracy is of fundamental importance in many fields since it provides optimal performance at relatively low-cost. Although there are many theoretical proposals that lead to resolution increments of several orders of magnitude, in practice, this resolution is limited by the imaging systems. In this paper we propose and demonstrate through numerical models a realistic limit for subpixel accuracy. The final result is that maximum achievable resolution enhancement is connected with the dynamic range of the image, i.e. the detection limit is 1/2^(nr.bits). Results here presented may help to proper design of superresolution experiments in microscopy, surveillance, defense and other fields.
Resumo:
Object tracking with subpixel accuracy is of fundamental importance in many fields since it provides optimal performance at relatively low cost. Although there are many theoretical proposals that lead to resolution increments of several orders of magnitude, in practice this resolution is limited by the imaging systems. In this paper we propose and demonstrate through simple numerical models a realistic limit for subpixel accuracy. The final result is that maximum achievable resolution enhancement is connected with the dynamic range of the image, i.e., the detection limit is 1/2∧(nr.bits). The results here presented may aid in proper design of superresolution experiments in microscopy, surveillance, defense, and other fields.