3 resultados para HYDROTHERMAL SYNTHESIS
em Universidad de Alicante
Resumo:
Advanced porous materials with tailored porosity (extremely high development of microporosity together with a narrow micropore size distribution (MPSD)) are required in energy and environmental related applications. Lignocellulosic biomass derived HTC carbons are good precursors for the synthesis of activated carbons (ACs) via KOH chemical activation. However, more research is needed in order to tailor the microporosity for those specific applications. In the present work, the influence of the precursor and HTC temperature on the porous properties of the resulting ACs is analyzed, remarking that, regardless of the precursor, highly microporous ACs could be generated. The HTC temperature was found to be an extremely influential parameter affecting the porosity development and the MPSD of the ACs. Tuning of the MPSD of the ACs was achieved by modification of the HTC temperature. Promising preliminary results in gas storage (i.e. CO2 capture and high pressure CH4 storage) were obtained with these materials, showing the effectiveness of this synthesis strategy in converting a low value lignocellulosic biomass into a functional carbon material with high performance in gas storage applications.
Resumo:
Spherical carbons have been prepared through hydrothermal treatment of three carbohydrates (glucose, saccharose and cellulose). Preparation variables such as treatment time, treatment temperature and concentration of carbohydrate have been analyzed to obtain spherical carbons. These spherical carbons can be prepared with particle sizes larger than 10 μm, especially from saccharose, and have subsequently been activated using different activation processes (H3PO4, NaOH, KOH or physical activation with CO2) to develop their textural properties. All these spherical carbons maintained their spherical morphology after the activation process, except when KOH/carbon ratios higher than 4/1 were used, which caused partial destruction of the spheres. The spherical activated carbons develop interesting textural properties with the four activating agents employed, reaching surface areas up to 3100 m2/g. Comparison of spherical activated carbons obtained with the different activating agents, taking into account the yields obtained after the activation process, shows that phosphoric acid activation produces spherical activated carbons with higher developed surface areas. Also, the spherical activated carbons present different oxygen groups’ content depending on the activating agent employed (higher surface oxygen groups content for chemical activation than for physical activation).
Resumo:
Acid pretreatment of lignocellulosic biomass, required for bioethanol production, generates large amounts of by-products, such as lignin and hydrolyzed hemicellulose fractions, which have found so far very limited applications. In this work, we demonstrate how the recovered hemicellulose hydrolysis products can be effectively utilized as a precursor for the synthesis of functional carbon materials through hydrothermal carbonization (HTC). The morphology and chemical structure of the synthesized HTC carbons are thoroughly characterized to highlight their similarities with glucose-derived HTC carbons. Furthermore, two routes for introducing porosity within the HTC carbon structure are presented: i) silica nanoparticle hard-templating, which is shown to be a viable method for the synthesis of carbonaceous hollow spheres; and ii) KOH chemical activation. The synthesized activated carbons (ACs) show an extremely high porosity (pore volume≈1.0 cm3 g−1) mostly composed of micropores (90 % of total pore volume). Because of their favorable textural properties, the ACs are further tested as electrodes for supercapacitors, yielding very promising results (300 F g−1 at 250 mA g−1) and confirming the high suitability of KOH-activated HTC carbons derived from spruce and corncob hydrolysis products as materials for electric double layer supercapacitors.