6 resultados para HIGH TIDAL VOLUME
em Universidad de Alicante
Resumo:
Two petroleum residues were pyrolyzed under two different conditions to obtain pitches with low or high mesophase content. The effect of the KOH: precursor ratio and the activation temperature on the packing density and porous texture of the carbons have been studied and optimized. Activated carbons combining high micropore volume (>1 cm3/g) and high packing density (0.7 g/cm3) have been successfully prepared. Regarding excess methane adsorption capacities, the best results (160 cm3 (STP)/cm3 at 25 °C and 3.5 MPa) were obtained using the pitch with the higher content of the more organized mesophase, activated at relatively low temperature (700 °C), with a medium KOH: precursor ratio (3:1). Some of the activated carbons exhibit enhanced adsorption capacity at high pressure, giving values as high as 175 cm3 (STP)/cm3 at 25 °C and 5 MPa and 200 cm3 (STP)/cm3 at 25 °C and 10 MPa (the same amount as in an empty cylinder but at half of the pressure), indicating a contribution of large micropores and narrow mesopores to adsorption at high pressure. The density of methane in pores between 1 and 2.5 nm at pressure up to 10 MPa was estimated to understand their contribution to the total adsorption capacity.
Resumo:
Light sources with three spectral bands in specific spectral positions are known to have high-color-discrimination capability. W. A. Thornton hypothesized that they may also enhance color discrimination for color-deficient observers. This hypothesis was tested here by comparing the Rösch–MacAdam color volume for color-deficient observers rendered by three of these singular spectra, two reported previously and one derived in this paper by maximization of the Rösch–MacAdam color solid. It was found that all illuminants tested enhance discriminability for deuteranomalous observers, but their impact on other congenital deficiencies was variable. The best illuminant was the one derived here, as it was clearly advantageous for the two red–green anomalies and for tritanopes and almost neutral for red–green dichromats. We conclude that three-band spectra with high-color-discrimination capability for normal observers do not necessarily produce comparable enhancements for color-deficient observers, but suitable spectral optimization clearly enhances the vision of the color deficient.
Resumo:
Purpose: To evaluate choroidal thickness in young subjects using Enhanced Depth Imaging Spectral Domain Optical Coherence Tomography (EDI SD-OCT) describing volume differences between all the defined areas of the Early Treatment Diabetic Retinopathy Study (ETDRS). Design: Prospective, clinical study. Methods: Seventy-nine eyes of 95 healthy, young (23.8±3.2years), adult volunteers were prospectively enrolled. Manual choroidal segmentation on a 25-raster horizontal scan protocol was performed. The measurements of the nine subfields defined by the ETDRS were evaluated. Results: Mean subfoveal choroidal thickness was 345.67±81.80μm and mean total choroidal volume was 8.99±1.88mm3. Choroidal thickness and volume were higher at the superior and temporal areas compared to inferior and nasal sectors of the same diameter respectively. Strong correlations between subfoveal choroidal thickness and axial length (AL) and myopic refractive error were obtained, r = -0.649, p<0.001 and r = 0.473, p<0.001 respectively. Emmetropic eyes tended to have thicker subfoveal choroidal thickness (381.94±79.88μm versus 307.04±64.91μm) and higher total choroidal volume than myopic eyes (9.80± 1.87mm3 versus 8.14±1.48mm3). The estimation of the variation of the subfoveal choroidal thickness with the AL was-43.84μm/mm. In the myopic group, the variation of the subfoveal choroidal thickness with the myopic refractive error was -10.45μm/D. Conclusions: This study establishes for the first time a normal database for choroidal thickness and volume in young adults. Axial length, and myopic ammetropy are highly associated with choroidal parameters in healthy subjects. EDI SD-OCT exhibited a high degree of intraobserver and interobserver repeatability.
Resumo:
A series of carbide-derived carbons (CDC) have been prepared starting from TiC and using different chlorine treatment temperatures (500–1200 °C). Contrary to N2 adsorption measurements at −196 °C, CO2 adsorption measurements at room temperature and high pressure (up to 1 MPa) together with immersion calorimetry measurements into dichloromethane suggest that the synthesized CDC exhibit a similar porous structure, in terms of narrow pore volume, independently of the temperature of the reactive extraction treatment used (samples synthesized below 1000 °C). Apparently, these carbide-derived carbons exhibit narrow constrictions were CO2 adsorption under standard conditions (0 °C and atmospheric pressure) is kinetically restricted. The same accounts for a slightly larger molecule as N2 at a lower adsorption temperature (−196 °C), i.e. textural parameters obtained from N2 adsorption measurements on CDC must be underestimated. Furthermore, here we show experimentally that nitrogen exhibits an unusual behavior, poor affinity, on these carbide-derived carbons. CH4 with a slightly larger diameter (0.39 nm) is able to partially access the inner porous structure whereas N2, with a slightly smaller diameter (0.36 nm), does not. Consequently, these CDC can be envisaged as excellent sorbent for selective CO2 capture in flue-gas streams.
Resumo:
Activated carbons with high metal content have been prepared by the pyrolysis of ethylene tar with dissolved metal acetylacetonates (Ti, V, Fe, Co, Ni and Cu) and subsequent activation with KOH of the pitch obtained in pyrolysis. These metal compounds decompose during the pyrolysis of ethylene tar yielding metal nanoparticles formed by metal and/or oxide which are homogeneously distributed in the pitch and remain in the activated carbon, so that the concentration of metal is, in most cases, 4–5 times higher than in the pristine ethylene tar. Since KOH is an effective activating agent, all activated carbons combine a high porosity development with a high metal content. In some of the carbons, such as P2FeA (3.3% Fe, pore volume 1.84 cm3/g, BET surface area 3270 m2/g), there is even an increase in the pore volume when compared to the activated carbon prepared in the same way without metal, in spite of the fact that the metal increases the weight of carbon without contributing to the adsorptive capacity. It seems that iron, on the one hand modifies the pyrolysis to give a pitch with larger mesophase content and on the other hand it locally catalyzes carbon gasification with the CO2 produced along the synthesis of the carbon. In addition to its influence on activation, iron promotes the formation of graphitic carbon fibers.
Resumo:
The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy.