2 resultados para Gun-Jumping

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001), a WBV use effect (p<0.001) and a discipline effect (p<0.001). Significantly greater improvements in the SJ (p<0.001) and CMJ (p<0.001) and in 1RM (p<0.001) were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind) were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively). It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.