5 resultados para Granular carbon filters
em Universidad de Alicante
Resumo:
A CNF-monolith sample (carbon nanofibres grown on a ceramic monolith), and a granular carbon xerogel have been used as supports for hybrid catalysts where the active species is an Rh diamine complex. The advantages of these supports are their open porous structure and their morphology, which make catalyst handling easier and avoid difficult separation processes. The obtained catalysts are noticeably more active than the homogeneous Rh complex and are stable against leaching. At first use, partial reduction of the Rh complex takes place and nanometer-sized Rh particles develop, which increases the catalyst activity. Despite the open porous structure, mass transport limitations are present, especially in the case of the carbon xerogel based catalyst. Differences in internal mass transfer limitations are essentially due to the different diffusional path lengths.
Resumo:
The adsorption and electroadsorption of arsenic from a natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as adsorbent and Pt/Ti and graphite as electrodes. A significant reduction of the arsenic concentration is achieved when current is imposed between the electrodes, especially when the activated carbon was located in the vicinity of the anode. This enhancement can be explained in terms of the presence of electrostatic interactions between the polarized carbon surface and the arsenic ions, and changes in the distribution of most stable species of arsenic in solution due to As(III) to As(V) oxidation. In summary, electrochemical adsorption on a filter-press cell can be used for enhancement the arsenic remediation with activated carbon in the treatment of a real groundwater.
Resumo:
A new non-porous carbon material from granular olive stones has been prepared to be used as a reference material for the characterization of the pore structure of activated carbons. The high precision adsorption isotherms of nitrogen at 77.4 K and argon at 87.3 K on the newly developed sample have been measured, providing the standard data for a more accurate comparative analysis to characterize disordered porous carbons using comparative methods such as t- and αS-methods.
Resumo:
Titanium dioxide nanoparticles prepared in situ by sol–gel method were supported on a spherical activated carbon to prepare TiO2/AC hybrid photocatalysts for the oxidation of gaseous organic compounds. Additionally, a granular activated carbon was studied for comparison purposes. In both types of TiO2/AC composites the effect of different variables (i.e., the thermal treatment conditions used during the preparation of these materials) and the UV-light wavelength used during photocatalytic oxidation were analyzed. The prepared materials were deeply characterized (by gas adsorption, TGA, XRD, SEM and photocatalytic propene oxidation). The obtained results show that the carbon support has an important effect on the properties of the deposited TiO2 and, therefore, on the photocatalytic activity of the resulting TiO2/AC composites. Thus, the hybrid materials prepared over the spherical activated carbon show better results than those prepared over the granular one; a good TiO2 coverage with a high crystallinity of the deposited titanium dioxide, which just needs an air oxidation treatment at low-moderate temperature (350–375 °C) to present high photoactivity, without the need of additional inert atmosphere treatments. Additionally, these materials are more active at 365 nm than at 257.7 nm UV radiation, opening the possibility of using solar light for this application.
Resumo:
This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.