18 resultados para Government of Oscar Bidegain
em Universidad de Alicante
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.
Resumo:
A nonempty set F is called Motzkin decomposable when it can be expressed as the Minkowski sum of a compact convex set C with a closed convex cone D. In that case, the sets C and D are called compact and conic components of F. This paper provides new characterizations of the Motzkin decomposable sets involving truncations of F (i.e., intersections of FF with closed halfspaces), when F contains no lines, and truncations of the intersection F̂ of F with the orthogonal complement of the lineality of F, otherwise. In particular, it is shown that a nonempty closed convex set F is Motzkin decomposable if and only if there exists a hyperplane H parallel to the lineality of F such that one of the truncations of F̂ induced by H is compact whereas the other one is a union of closed halflines emanating from H. Thus, any Motzkin decomposable set F can be expressed as F=C+D, where the compact component C is a truncation of F̂. These Motzkin decompositions are said to be of type T when F contains no lines, i.e., when C is a truncation of F. The minimality of this type of decompositions is also discussed.
Resumo:
A woman stung by the box jellyfish Carybdea marsupialis (Cnidaria, Cubozoa) at a Spanish Mediterranean beach, showed systemic manifestations over several months (pain far from the inoculation point, arthralgia, paresthesia, hyperesthesia, increase of eosinophils and IgE) in addition to the skin condition.
Resumo:
Forest plantations have been extensively used to combat desertification. In drylands, harsh climate conditions and unfertile soils often preclude seedling establishment. The improvement in seedling quality by manipulating nutrient availability could contribute to increase planting success. However, morpho-functional traits defining optimum seedling quality in drylands, and the fertilization schemes to achieve them, are still under discussion. Several studies suggest that well fertilized seedlings may perform better than nutrient limited seedlings in these environments. However, recent works have shown opposite results. In this review, we discuss the concept of seedling quality in drylands based on an evaluation of the effects of nutrient manipulation on seedling morpho-functional traits and field performance. According to existing data, we hypothesize that nutrient-limited small seedlings may be better adapted to arid environments and unfavorable microsites, where access to water is uncertain and a conservative water use strategy may be advantageous. In contrast, in dry sub-humid areas, areas with deep soils, protected from excess radiation, and areas where irrigation is feasible, well-fertilized big seedlings with high root growth potential may have more chances of success. We discuss this theory in the context of the multiple objectives of dryland restoration and the environmental constrains posed by these areas, and identify knowledge gaps that should be targeted to test our hypothesis.
Resumo:
The lower urinary tract is one of the most complex biological systems of the human body as it involved hydrodynamic properties of urine and muscle. Moreover, its complexity is increased to be managed by voluntary and involuntary neural systems. In this paper, a mathematical model of the lower urinary tract it is proposed as a preliminary study to better understand its functioning. Furthermore, another goal of that mathematical model proposal is to provide a basis for developing artificial control systems. Lower urinary tract is comprised of two interacting systems: the mechanical system and the neural regulator. The latter has the function of controlling the mechanical system to perform the voiding process. The results of the tests reproduce experimental data with high degree of accuracy. Also, these results indicate that simulations not only with healthy patients but also of patients with dysfunctions with neurological etiology present urodynamic curves very similar to those obtained in clinical studies.
Resumo:
The aim of this study is to investigate the effect of particle size on the non-isothermal pyrolysis of almond shells (AS) and olive stones (OS) and to show possible differences in the composition of the different fractions obtained after milling and sieving. The results obtained from the study of different particle size of AS and OS samples show significant differences in the solid residue obtained and in the shape and overlapping degree of the peaks, especially with the smaller particle size. These differences can be due to different factors: (a) the amount of inorganic matter, which increases as particle size decreases, (b) heat and mass transfer processes, (c) different sample composition as a consequence of the milling process which may provoke changes in the structure and the segregation of the components (in addition to the ashes) increasingly changes the composition of the sample as the particle size decreases.
Resumo:
The use of hydrogen as an energy vector leads to the development of materials with high hydrogen adsorption capacity. In this work, a new layered stannosilicate, UZAR-S3, is synthesized and delaminated, producing UZAR-S4. UZAR-S3, with the empirical formula Na4SnSi5O14·3.5H2O and lamellar morphology, is a layered stannosilicate built from SnO6 and SiO4 polyhedra. The delamination process used here comprises three stages: protonation with acetic acid, swelling with nonylamine and the delamination itself with an HCl/H2O/ethanol solution. UZAR-S4 is composed of sheets a few nanometers thick with a high aspect ratio and a surface area of 236 m2/g, twenty times higher than that of UZAR-S3. At −196 °C for UZAR-S4, H2 adsorption reached remarkable values of 3.7 and 4.2 wt% for 10 and 40 bar, respectively, the latter value giving a high volumetric H2 storage capacity of 26.2 g of H2/L.
Resumo:
In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.
Resumo:
Koninckinids are a suitable group to shed light on the biotic crisis suffered by brachiopod fauna in the Early Jurassic. Koninckinid fauna recorded in the late Pliensbachian–early Toarcian from the easternmost Subbetic basin is analyzed and identified as a precursor signal for one of the most conspicuous mass extinction events of the Phylum Brachiopoda, a multi-phased interval with episodes of changing environmental conditions, whose onset can be detected from the Elisa–Mirabile subzones up to the early Toarcian extinction boundary in the lowermost Serpentinum Zone (T-OAE). The koninckinid fauna had a previously well-established migration pattern from the intra-Tethyan to the NW-European basins but a first phase with a progressive warming episode in the Pliensbachian–Toarcian transition triggered a koninckinid fauna exodus from the eastern/central Tethys toward the westernmost Mediterranean margins. A second stage shows an adaptive response to more adverse conditions in the westernmost Tethyan margins and finally, an escape and extinction phase is detected in the Atlantic areas from the mid-Polymorphum Zone onwards up to their global extinction in the lowermost Serpentinum Zone. This migration pattern is independent of the paleogeographic bioprovinciality and is unrelated to a facies-controlled pattern. The anoxic/suboxic environmental conditions should only be considered as a minor factor of partial control since well-oxygenated habitats are noted in the intra-Tethyan basins and this factor is noticeable only in the second westward migratory stage (with dwarf taxa and oligotypical assemblages). The analysis of cold-seep proxies in the Subbetic deposits suggests a radiation that is independent of methane releases in the Subbetic basin.
Resumo:
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a “demographic inverse problem” and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.
Resumo:
The development of electrochemical processes for the conversion of CO2 into value-added products allows innovative carbon capture & utilization (CCU) instead of carbon capture & storage (CCS). In addition, coupling this conversion with renewable energy sources would make it possible to chemically store electricity from these intermittent renewable sources. The electroreduction of CO2 to formate in aqueous solution has been performed using Sn particles deposited over a carbon support. The effect of the particle size and Sn metal loading has been evaluated using cyclic voltammetry and chronoamperometry. The selected electrode has been tested on an experimental filter-press type cell system for continuous and single pass CO2 electroreduction to obtain formate as main product at ambient pressure and temperature. Experimental results show that using electrodes with 0.75 mg Sn cm−2, 150 nm Sn particles, and working at a current density of 90 mA cm−2, it is possible to achieve rates of formate production over 3.2 mmol m−2 s−1 and faradaic efficiencies around 70% for 90 min of continuous operation. These experimental conditions allow formate concentrations of about 1.5 g L−1 to be obtained on a continuous mode and with a single pass of catholyte through the cell.
Resumo:
This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU) PBL. YSU is a first-order scheme that uses non-local eddy diffusivity coefficients to compute turbulent fluxes. It is based on the MRF, and improves it with an explicit treatment of the entrainment. With the aim of evaluating the RAMS results for these PBL parameterizations, a series of numerical simulations have been performed and contrasted with the results obtained using the Mellor and Yamada (MY) scheme, also widely used, and the standard PBL scheme in the RAMS model. The numerical study carried out here is focused on mesoscale circulation events during the summer, as these meteorological situations dominate this season of the year in the Western Mediterranean coast. In addition, the sensitivity of these PBL parameterizations to the initial soil moisture content is also evaluated. The results show a warmer and moister PBL for the YSU scheme compared to both MRF and MY. The model presents as well a tendency to overestimate the observed temperature and to underestimate the observed humidity, considering all PBL schemes and a low initial soil moisture content. In addition, the bias between the model and the observations is significantly reduced moistening the initial soil moisture of the corresponding run. Thus, varying this parameter has a positive effect and improves the simulated results in relation to the observations. However, there is still a significant overestimation of the wind speed over flatter terrain, independently of the PBL scheme and the initial soil moisture used, even though a different degree of accuracy is reproduced by RAMS taking into account the different sensitivity tests.
Resumo:
Recent advances in statistical downscaling have allowed the reconstruction of temperatures for the complete 1948–2011 period in a spatial resolution of 90 m and without gaps for the Valencian Community (Spain) and bordering areas. It presently enables analyses in this region, which allows the determination of recent temperature changes at subregional and local scales. The present work focuses on obtaining the thermicity index according to Rivas-Martínez, a well-known indicator of different thermotypes associated with bioclimatic horizons. The change in this index, which has happened in the region between 1948 and 2011, was calculated by generating fine-scale maps of the potential extension of different thermotypes. The results show a greater regression for the thermotypes in a finicolous position, e.g. Orotemperate, Supratemperate and Supramediterranean horizons, which herein indicate greater potential vulnerability in climate change. In the absence of, and given the need for, such fine-scale information, this work should be useful for specialized researchers to spatially limit the potentially most vulnerable biotopes to climate change.
Resumo:
Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of scoring functions used in most VS methods we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, this information being exploited afterwards to improve VS predictions.
Resumo:
A rapid and efficient Dispersive Liquid–Liquid Microextraction (DLLME) followed by Laser-Induced Breakdown Spectroscopy detection (LIBS) was evaluated for simultaneous determination of Cr, Cu, Mn, Ni and Zn in water samples. Metals in the samples were extracted with tetrachloromethane as pyrrolidinedithiocarbamate (APDC) complexes, using vortex agitation to achieve dispersion of the extractant solvent. Several DLLME experimental factors affecting extraction efficiency were optimized with a multivariate approach. Under optimum DLLME conditions, DLLME-LIBS method was found to be of about 4.0–5.5 times more sensitive than LIBS, achieving limits of detection of about 3.7–5.6 times lower. To assess accuracy of the proposed DLLME-LIBS procedure, a certified reference material of estuarine water was analyzed.