4 resultados para Geometria. Aritmética. Educação matemática. Multiculturalismo.
em Universidad de Alicante
Resumo:
This study provides support to the characteristics of participatory and anticipatory stages in secondary school pupils’ abstraction of mathematical conceptions. We carried out clinical task-based interviews with 71 secondary-school pupils to obtain evidence of the different constructed mathematical conceptions (Participatory Stage) and how they were used (Anticipatory Stage). We distinguish two moments in the Participatory Stage based on the coordination of information from particular cases by activity-effect reflection which, in some cases, lead to a change of focus enabling secondary-school pupils to achieve a reorganization of their knowledge. We argue that (a) the capacity of perceiving regularities in sets of particular cases is a characteristic of activity-effect reflection in the abstraction of mathematical conceptions in secondary school, and (b) the coordination of information by pupils provides opportunities for changing the attention-focus from the particular results to the structure of properties.
Resumo:
El objetivo de esta investigación es caracterizar algunos indicadores del desarrollo del esquema de derivada en estudiantes de pos-secundaria. Usamos los niveles intra, inter y trans del desarrollo de un esquema propuestos por Piaget y García para caracterizar el uso flexible que los estudiantes hacen de la equivalencia lógica entre diferentes elementos matemáticos cuando resuelven un problema, como un indicador del desarrollo del esquema de derivada. Este indicador ayuda a explicar la transición entre los niveles inter y trans de desarrollo del esquema derivada.
Resumo:
El objetivo de este trabajo es caracterizar la flexibilidad, entendida como habilidad para modificar la estrategia de resolución de un problema cuando se modifica la demanda de la tarea, de estudiantes de educación secundaria (12-16 años) en problemas de reconocimiento de patrones con varios apartados. Se utiliza una metodología de tipo cualitativo analizando las respuestas de los estudiantes en base a dos criterios: corrección de las respuestas y estrategias de resolución, y agrupando las que presentan características semejantes. Los resultados indican tres perfiles de estudiantes en relación a la flexibilidad en el uso de estrategias y el éxito alcanzado. El primero agrupa a los estudiantes que usan sólo la estrategia recursiva; la mayor parte de ellos se bloquea al aumentar la demanda cognitiva de la tarea; predominan los estudiantes de 12-13 años. El segundo perfil corresponde a los que cambian de una estrategia recursiva a una aproximación proporcional dando un resultado incorrecto; es más frecuente en los estudiantes de 13-14 años. Finalmente, el tercer perfil agrupa a los estudiantes que al aumentar la demanda cognitiva de la tarea cambian con éxito de una estrategia recursiva a una funcional; su frecuencia aumenta con la edad. Se concluye que la flexibilidad necesaria para identificar patrones cuando se incrementa la demanda de la tarea está relacionada con los conocimientos de los estudiantes y con el control y la regulación del proceso de resolución. Por otra parte, los estudiantes más jóvenes manifestaron menor grado de flexibilidad que los más mayores.
Resumo:
Un dominio particular del conocimiento matemático para la enseñanza es el conocimiento de matemáticas especializado. Este estudio se centra en examinar el conocimiento de matemáticas especializado en el ámbito del razonamiento proporcional de un grupo de estudiantes para maestro de Educación Primaria. Los resultados muestran que los estudiantes para maestro tienen un conocimiento especializado sobre el razonamiento proporcional limitado puesto de manifiesto por la dificultad en identificar situaciones no proporcionales, en desarrollar formas de razonar en relación a la construcción de la unidad y en manejar el significado multiplicativo de la idea de operador.