4 resultados para GROWTH POTENTIAL

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forest plantations have been extensively used to combat desertification. In drylands, harsh climate conditions and unfertile soils often preclude seedling establishment. The improvement in seedling quality by manipulating nutrient availability could contribute to increase planting success. However, morpho-functional traits defining optimum seedling quality in drylands, and the fertilization schemes to achieve them, are still under discussion. Several studies suggest that well fertilized seedlings may perform better than nutrient limited seedlings in these environments. However, recent works have shown opposite results. In this review, we discuss the concept of seedling quality in drylands based on an evaluation of the effects of nutrient manipulation on seedling morpho-functional traits and field performance. According to existing data, we hypothesize that nutrient-limited small seedlings may be better adapted to arid environments and unfavorable microsites, where access to water is uncertain and a conservative water use strategy may be advantageous. In contrast, in dry sub-humid areas, areas with deep soils, protected from excess radiation, and areas where irrigation is feasible, well-fertilized big seedlings with high root growth potential may have more chances of success. We discuss this theory in the context of the multiple objectives of dryland restoration and the environmental constrains posed by these areas, and identify knowledge gaps that should be targeted to test our hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on positive plant–plant relations have traditionally focused on pair-wise interactions. Conversely, the interaction with other co-occurring species has scarcely been addressed, despite the fact that the entire community may affect plant performance. We used woody vegetation patches as models to evaluate community facilitation in semi-arid steppes. We characterized biotic and physical attributes of 53 woody patches (patch size, litter accumulation, canopy density, vegetation cover, species number and identity, and phylogenetic distance), and soil fertility (organic C and total N), and evaluated their relative importance for the performance of seedlings of Pistacia lentiscus, a keystone woody species in western Mediterranean steppes. Seedlings were planted underneath the patches, and on their northern and southern edges. Woody patches positively affected seedling survival but not seedling growth. Soil fertility was higher underneath the patches than elsewhere. Physical and biotic attributes of woody patches affected seedling survival, but these effects depended on microsite conditions. The composition of the community of small shrubs and perennial grasses growing underneath the patches controlled seedling performance. An increase in Stipa tenacissima and a decrease in Brachypodium retusum increased the probability of survival. The cover of these species and other small shrubs, litter depth and community phylogenetic distance, were also related to seedling survival. Seedlings planted on the northern edge of the patches were mostly affected by attributes of the biotic community. These traits were of lesser importance in seedlings planted underneath and in the southern edge of patches, suggesting that constraints to seedling establishment differed within the patches. Our study highlights the importance of taking into consideration community attributes over pair-wise interactions when evaluating the outcome of ecological interactions in multi-specific communities, as they have profound implications in the composition, function and management of semi-arid steppes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5 % of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.