4 resultados para GIS (Geographic Information System)
em Universidad de Alicante
Resumo:
Los Sistemas de Información Geográfica nos permiten estudiar la evolución en el tiempo de cualquier fenómeno o hecho físico que se pueda referenciar geográficamente. En el presente trabajo se realiza un estudio, mediante un Sistema de Información Geográfica, del desarrollo industrial de la Ciudad de Alcoy en el P. G. O. U. de 1957. En el tiempo de duración de este plan, que abarca un período de 32 años, con una única revisión en 1982, la ciudad ha sufrido grandes transformaciones económicas, sociales, industriales y urbanísticas. El trabajo pretende, por una parte, elaborar la cartografía de la evolución que ha sufrido la localización de la industria alcoyana y realizar un análisis en el que quede de manifiesto la política industrial llevada a cabo por las Administraciones y las consecuencias que ha tenido para el desarrollo de la ciudad. En segundo lugar, se pretende estudiar las posibilidades de una aplicación GIS como GeoMedia en la realización de dicho estudio, así como analizar el proceso para la realización del trabajo: digitalización de mapas, referenciación geográfica, utilización de mapas digitales, definición de entidades y clases de entidad, bases de datos a utilizar, consultas a realizar etc.
Resumo:
The present study aims to inventory and analyse the ethnobotanical knowledge about medicinal plants in the Serra de Mariola Natural Park. In respect to traditional uses, 93 species reported by local informants were therapeutic, 27 food, 4 natural dyes and 13 handcrafts. We developed a methodology that allowed the location of individuals or vegetation communities with a specific popular use. We prepared a geographic information system (GIS) that included gender, family, scientific nomenclature and common names in Spanish and Catalan for each species. We also made a classification of 39 medicinal uses from ATC (Anatomical, Therapeutic, Chemical classification system). Labiatae (n=19), Compositae (n=9) and Leguminosae (n=6) were the families most represented among the plants used to different purposes in humans. Species with the most elevated cultural importance index (CI) values were Thymus vulgaris (CI=1.431), Rosmarinus officinalis (CI=1.415), Eryngium campestre (CI=1.325), Verbascum sinuatum (CI=1.106) and Sideritis angustifolia (CI=1.041). Thus, the collected plants with more therapeutic uses were: Lippia triphylla (12), Thymus vulgaris and Allium roseum (9) and Erygium campestre (8). The most repeated ATC uses were: G04 (urological use), D03 (treatment of wounds and ulcers) and R02 (throat diseases). These results were in a geographic map where each point represented an individual of any species. A database was created with the corresponding therapeutic uses. This application is useful for the identification of individuals and the selection of species for specific medicinal properties. In the end, knowledge of these useful plants may be interesting to revive the local economy and in some cases promote their cultivation.
Resumo:
Different types of land use are usually present in the areas adjacent to many shallow karst cavities. Over time, the increasing amount of potentially harmful matter and energy, of mainly anthropic origin or influence, that reaches the interior of a shallow karst cavity can modify the hypogeal ecosystem and increase the risk of damage to the Palaeolithic rock art often preserved within the cavity. This study proposes a new Protected Area status based on the geological processes that control these matter and energy fluxes into the Altamira cave karst system. Analysis of the geological characteristics of the shallow karst system shows that direct and lateral infiltration, internal water circulation, ventilation, gas exchange and transmission of vibrations are the processes that control these matter and energy fluxes into the cave. This study applies a comprehensive methodological approach based on Geographic Information Systems (GIS) to establish the area of influence of each transfer process. The stratigraphic and structural characteristics of the interior of the cave were determined using 3D Laser Scanning topography combined with classical field work, data gathering, cartography and a porosity–permeability analysis of host rock samples. As a result, it was possible to determine the hydrogeological behavior of the cave. In addition, by mapping and modeling the surface parameters it was possible to identify the main features restricting hydrological behavior and hence direct and lateral infiltration into the cave. These surface parameters included the shape of the drainage network and a geomorphological and structural characterization via digital terrain models. Geological and geomorphological maps and models integrated into the GIS environment defined the areas involved in gas exchange and ventilation processes. Likewise, areas that could potentially transmit vibrations directly into the cave were identified. This study shows that it is possible to define a Protected Area by quantifying the area of influence related to each transfer process. The combined maximum area of influence of all the processes will result in the new Protected Area. This area will thus encompass all the processes that account for most of the matter and energy carried into the cave and will fulfill the criteria used to define the Protected Area. This methodology is based on the spatial quantification of processes and entities of geological origin and can therefore be applied to any shallow karst system that requires protection.
Resumo:
Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.