9 resultados para Functional timing analysis (FTA)

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a long-term phase-coherent timing analysis and pulse-phase resolved spectroscopy for the two outbursts observed from the transient anomalous X-ray pulsar CXOU J164710.2−455216. For the first outburst we used 11 Chandra and XMM–Newton observations between 2006 September and 2009 August, the longest baseline yet for this source. We obtain a coherent timing solution with P = 10.61065583(4) s, Ṗ = 9.72(1) × 10−13 s s−1 and P̈ = –1.05(5) × 10−20 s s−2. Under the standard assumptions this implies a surface dipolar magnetic field of ∼1014 G, confirming this source as a standard B magnetar. We also study the evolution of the pulse profile (shape, intensity and pulsed fraction) as a function of time and energy. Using the phase-coherent timing solution we perform a phase-resolved spectroscopy analysis, following the spectral evolution of pulse-phase features, which hints at the physical processes taking place on the star. The results are discussed from the perspective of magnetothermal evolution models and the untwisting magnetosphere model. Finally, we present similar analysis for the second, less intense, 2011 outburst. For the timing analysis we used Swift data together with 2 XMM–Newton and Chandra pointings. The results inferred for both outbursts are compared and briefly discussed in a more general framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: ˙ P = 4(1) × 10−15 s s−1, significant at a ∼3.5σ confidence level. This leads to a surface dipolar magnetic field of Bdip 6 × 1012 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ∼1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ∼0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10−11 to 1.2 × 10−14 erg s−1 cm−2. Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ∼550 kyr, and a dipolar magnetic field at birth of ∼1014 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3–1606 (SGR 1822–1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3–1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative P = 8.3(2)×10−14 s s−1, which implies an inferred dipolar surface magnetic field of B sime 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3–1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3–1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and B tor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the outburst of the newly discovered X-ray transient 3XMMJ185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of ˙ P <1.4×10−13 s s−1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of Bdip < 4.1×1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third “low-B” magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3−1606. We have also obtained an upper limit to the quiescent luminosity (<4×1033 erg s−1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The early-type binary MY Cam belongs to the young open cluster Alicante 1, embedded in Cam OB3. Aims. MY Cam consists of two early-O type main-sequence stars and shows a photometric modulation suggesting an orbital period slightly above one day. We intend to confirm this orbital period and derive orbital and stellar parameters. Methods. Timing analysis of a very exhaustive (4607 points) light curve indicates a period of 1.1754514 ± 0.0000015 d. High-resolution spectra and the cross-correlation technique implemented in the todcor program were used to derive radial velocities and obtain the corresponding radial velocity curves for MY Cam. Modelling with the stellar atmosphere code fastwind was used to obtain stellar parameters and create templates for cross-correlation. Stellar and orbital parameters were derived using the Wilson-Devinney code, such that a complete solution to the binary system could be described. Results. The determined masses of the primary and secondary stars in MY Cam are 37.7 ± 1.6 and 31.6 ± 1.4M⊙, respectively. The corresponding temperatures, derived from the model atmosphere fit, are 42 000 and 39 000 K, with the more massive component being hotter. Both stars are overfilling their Roche lobes, sharing a common envelope. Conclusions. MY Cam contains the most massive dwarf O-type stars found so far in an eclipsing binary. Both components are still on the main sequence, and probably not far from the zero-age main sequence. The system is a likely merger progenitor, owing to its very short period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2013 April a new magnetar, SGR 1745−2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the centre of the Milky Way, Sagittarius A*. SGR 1745−2900 has a surface dipolar magnetic field of ∼2 × 1014 G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity LX ∼ 5 × 1035 erg s−1. Here we report on the long-term Chandra (25 observations) and XMM–Newton (eight observations) X-ray monitoring campaign of SGR 1745−2900 from the onset of the outburst in 2013 April until 2014 September. This unprecedented data set allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ∼2 around 2013 June, and reveals that a further increase occurred between 2013 October 30 and 2014 February 21. We find that the period derivative changed from 6.6 × 10−12 to 3.3 × 10−11 s s−1 in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ∼200 d of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unprecedented sensitivity and large field of view of SKA will be of paramount importance for pulsar science, and for many related research fields. In particular, beside the obvious discovery of many more pulsars (even those with very low luminosity), and the extremely accurate timing analysis of the current pulsar population, SKA will allow to use pulsars to measure or put strong constraints on gravitational waves, Galactic magnetism, planet masses, general relativity and nuclear physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability to colonize endophytically roots of economically-important crop plants, thereby promoting their growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ∼41 Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing barley roots. Functional annotation of these genes showed that hydrolytic enzymes and transporters are expressed during endophytism. This structural and functional analysis of the P. chlamydosporia genome provides a starting point for understanding the molecular mechanisms involved in the multitrophic lifestyle of this fungus. The genomic information provided here should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of plant-parasitic nematodes and as a plant growth-promoting organism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages.