1 resultado para Friedman rule
em Universidad de Alicante
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (6)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- Archive of European Integration (522)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Bibloteca do Senado Federal do Brasil (2)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (52)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (2)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (3)
- Indian Institute of Science - Bangalore - Índia (18)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (37)
- Queensland University of Technology - ePrints Archive (63)
- Repositório digital da Fundação Getúlio Vargas - FGV (21)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (6)
- University of Southampton, United Kingdom (1)
Relevância:
Resumo:
As it is known, there is no rule satisfying additivity in the complete domain of bankruptcy problems. This paper proposes a notion of partial additivity in this context, to be called μ-additivity. We find out that this property, together with two quite compelling axioms, equal treatment of equals and continuity, identify the minimal overlap rule, introduced by O’Neill (Math. Soc. Sci. 2:345–371, 1982).