7 resultados para Frequency selective surface

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two microporous hectorites were prepared by conventional and microwave heating, and a delaminated mesoporous hectorite by an ultrasound-assisted synthesis. These three hectorites were impregnated with copper. The characterization techniques used were XRD, N2 adsorption, TEM and H2 reduction after selective surface copper oxidation by N2O (to determine copper dispersion). The catalytic activity for soot combustion of the copper-free and the copper-containing hectorites was tested under a gas mixture of 500 ppm NOx/5% O2/N2 (and 5% O2/N2 in some cases), evaluating their stability through three consecutive soot combustion experiments. The delaminated hectorite showed the highest surface area (353 m2/g) allowing the highest dispersion of copper. This copper-containing catalyst was the most active for soot combustion among those prepared and tested in this study. We have also concluded that the Cu/hectorite-catalyzed soot combustion mechanism is based on the activation of the O2 molecule and not on the NO2-assisted soot combustion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500–1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthetic procedure to prepare novel materials (surface-mediated fillings) based on robust hierarchical monoliths is reported. The methodology includes the deposition of a (micro- or mesoporous) silica thin film on the support followed by growth of a porous monolithic SiO2 structure. It has been demonstrated that this synthesis is viable for supports of different chemical nature with different inner diameters without shrinkage of the silica filling. The formation mechanism of the surface-mediated fillings is based on a solution/precipitation process and the anchoring of the silica filling to the deposited thin film. The interaction between the two SiO2 structures (monolith and thin film) depends on the porosity of the thin film and yields composite materials with different mechanical stability. By this procedure, capillary microreactors have been prepared and have been proved to be highly active and selective in the total and preferential oxidation of carbon monoxide (TOxCO and PrOxCO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of liquid silicon infiltration is investigated for channels with radii from 0.25 to 0.75 [mm] drilled in compact carbon preforms. The advantage of this setup is that the study of the phenomenon results to be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann simulations. The experiments give clear evidence that the growth of silicon carbide proceeds in two different stages and basic mechanisms are highlighted. Lattice-Boltzmann simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing to implement the resistance from chemical reaction in Darcy law is also proposed.