4 resultados para Freio Lingual
em Universidad de Alicante
Resumo:
El reciente crecimiento masivo de medios on-line y el incremento de los contenidos generados por los usuarios (por ejemplo, weblogs, Twitter, Facebook) plantea retos en el acceso e interpretación de datos multilingües de manera eficiente, rápida y asequible. El objetivo del proyecto TredMiner es desarrollar métodos innovadores, portables, de código abierto y que funcionen en tiempo real para generación de resúmenes y minería cross-lingüe de medios sociales a gran escala. Los resultados se están validando en tres casos de uso: soporte a la decisión en el dominio financiero (con analistas, empresarios, reguladores y economistas), monitorización y análisis político (con periodistas, economistas y políticos) y monitorización de medios sociales sobre salud con el fin de detectar información sobre efectos adversos a medicamentos.
Resumo:
The present is marked by the availability of large volumes of heterogeneous data, whose management is extremely complex. While the treatment of factual data has been widely studied, the processing of subjective information still poses important challenges. This is especially true in tasks that combine Opinion Analysis with other challenges, such as the ones related to Question Answering. In this paper, we describe the different approaches we employed in the NTCIR 8 MOAT monolingual English (opinionatedness, relevance, answerness and polarity) and cross-lingual English-Chinese tasks, implemented in our OpAL system. The results obtained when using different settings of the system, as well as the error analysis performed after the competition, offered us some clear insights on the best combination of techniques, that balance between precision and recall. Contrary to our initial intuitions, we have also seen that the inclusion of specialized Natural Language Processing tools dealing with Temporality or Anaphora Resolution lowers the system performance, while the use of topic detection techniques using faceted search with Wikipedia and Latent Semantic Analysis leads to satisfactory system performance, both for the monolingual setting, as well as in a multilingual one.
Resumo:
En este trabajo presentamos unos resultados preliminares obtenidos mediante la aplicación de una nueva técnica de construcción de grafos semánticos a la tarea de desambiguación del sentido de las palabras en un entorno multilingüe. Gracias al uso de esta técnica no supervisada, inducimos los sentidos asociados a las traducciones de la palabra ambigua considerada en la lengua destino. Utilizamos las traducciones de las palabras del contexto de la palabra ambigua en la lengua origen para seleccionar el sentido más probable de la traducción. El sistema ha sido evaluado sobre la colección de datos de una tarea de desambiguación multilingüe que se propuso en la competición SemEval-2010, consiguiendo superar los resultados de todos los sistemas no supervisados que participaron en aquella tarea.
Resumo:
In recent years, Twitter has become one of the most important microblogging services of the Web 2.0. Among the possible uses it allows, it can be employed for communicating and broadcasting information in real time. The goal of this research is to analyze the task of automatic tweet generation from a text summarization perspective in the context of the journalism genre. To achieve this, different state-of-the-art summarizers are selected and employed for producing multi-lingual tweets in two languages (English and Spanish). A wide experimental framework is proposed, comprising the creation of a new corpus, the generation of the automatic tweets, and their assessment through a quantitative and a qualitative evaluation, where informativeness, indicativeness and interest are key criteria that should be ensured in the proposed context. From the results obtained, it was observed that although the original tweets were considered as model tweets with respect to their informativeness, they were not among the most interesting ones from a human viewpoint. Therefore, relying only on these tweets may not be the ideal way to communicate news through Twitter, especially if a more personalized and catchy way of reporting news wants to be performed. In contrast, we showed that recent text summarization techniques may be more appropriate, reflecting a balance between indicativeness and interest, even if their content was different from the tweets delivered by the news providers.