3 resultados para Foxes - Environmental aspects - Victoria

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La vinculación del negocio turístico-inmobiliario con las migraciones por amenidad o por estilos de vida tiende a incubar problemas de racionalidad que, además de los ligados a la falta de sustentabilidad ambiental, acaban por volver inviable la lógica socio-económica del proceso. Para ilustrar este argumento se propone una reflexión crítica basada en la experiencia de lo acontecido en tres regiones del mundo en las que el desarrollo del modo de producción inmobiliario -basado en la captación y promoción de los tipos de movilidad residencial orientados por la búsqueda de experiencias de ocio- ha promovido efectos regresivos en relación al desarrollo local: las áreas montañosas del Oeste de Canadá, la Norpatagonia, en Argentina, y el sudeste de España, con atención a la provincia de Alicante. El artículo indaga en la falta de sustentabilidad de un modelo de desarrollo basado en el negocio turístico-inmobiliario; al tiempo que identifica patrones comunes y diferencias entre los casos analizados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main contribution to the radiological impact from natural radiation received by general population is due to the emission of radon (222Rn). The objective of this project is the study of radon gas as a radioactive element in our buildings (existing and future constructions) to avoid its influence in interior rooms. The proposed methodology reflects different aspects of natural radioactivity in buildings, their sources, their control criteria and regulatory framework; aspects related to the presence of radon in our constructions, entryways, measurement methodology for indoor environmental concentration are studied; other protection solutions and remediation measures in both existing buildings and new construction projects are analyzed. In conclusion, the paper presents previous evaluation tools, the analysis of existing concentration and the choice of the most appropriate mitigation / remediation measures depending on each case, through the establishment of different architectural proposals to plan actions against radon where necessary.