3 resultados para Fourier modal method

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper shows the results of an experimental analysis on the bell tower of “Chiesa della Maddalena” (Mola di Bari, Italy), to better understand the structural behavior of slender masonry structures. The research aims to calibrate a numerical model by means of the Operational Modal Analysis (OMA) method. In this way realistic conclusions about the dynamic behavior of the structure are obtained. The choice of using an OMA derives from the necessity to know the modal parameters of a structure with a non-destructive testing, especially in case of cultural-historical value structures. Therefore by means of an easy and accurate process, it is possible to acquire in-situ environmental vibrations. The data collected are very important to estimate the mode shapes, the natural frequencies and the damping ratios of the structure. To analyze the data obtained from the monitoring, the Peak Picking method has been applied to the Fast Fourier Transforms (FFT) of the signals in order to identify the values of the effective natural frequencies and damping factors of the structure. The main frequencies and the damping ratios have been determined from measurements at some relevant locations. The responses have been then extrapolated and extended to the entire tower through a 3-D Finite Element Model. In this way, knowing the modes of vibration, it has been possible to understand the overall dynamic behavior of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.