4 resultados para Formations (Geology)

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As is well known, in order to select remediation measures to correct or prevent slope instabilities, it is essential to identify and characterize the instability mechanisms. This task is especially complex for heterogeneous rock masses such as Flysch formations. This paper addresses the assessment of corrective measures used in carbonate Flysch formations by classifying and grouping field data reported in an available database in order to associate this data with various instability mechanisms and stratigraphic column types as well as with the corrective measures taken to stabilise them. For this purpose, 194 slopes have been geomechanically characterized, mainly by considering the observed instability mechanisms. The corrective measures that were applied have been evaluated for their suitability and performance, and, if applicable, the causes of their malfunction have been also studied. As a result, some guidelines based on the observed behaviour and the suitability of the correction measure as a function of instability type are proposed for similar slopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sub-Numidian Tertiary stratigraphic record of the Tunisian Tell has been updated by means of 11 stratigraphic successions belonging to the Maghrebian Flysch Basin (N-African Margin) reconstructed in the Tunisian Numidian Zone and the Triassic Dome Zone. The Sub-Numidian successions studied range from the Paleocene to the Priabonian, representing a major change in the sedimentation from the latest Cretaceous onwards. The Sub-Numidian succession and the Numidian Formation are separated by an Intermediate interval located between two erosive surfaces (local paraconformities). The stratigraphic analysis has revealed diachronous contacts between distal slope to basinal sedimentary formation, allowing the identification of an Early Eocene Chouabine marker bed. The integrated biostratigraphic analysis made by means of planktonic foraminifera and calcareous nannoplankton updates the ages of the formations studied, proving younger than previously thought. The new definition of the Sub-Numidian stratigraphy enables a better correlation with equivalent successions widely outcropping along the Maghrebian, Betic, and southern Apennine Chains. The study proposes a new evolutionary tectonic/sedimentary model for this Tunisian sector of the Maghrebian Chain during the Paleogene after the Triassic–Cretaceous extensional regime. This paleogeographic reorganization is considered a consequence of the beginning of the tectonic inversion (from extensional to compressional), leading to the end of the preorogenic sedimentation. Our results suggest a non-tabular stratigraphy (marked by lateral changes of lithofacies, variable thicknesses, and the presence of diachronous boundaries) providing significant elements for a re-evaluation of active petroleum systems on the quality, volume, distribution, timing of oil generation, and on the migration and accumulation of the oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studied Flysch sequence of Alicante occupies a widely populated area crossed by main communication routes. The slopes existing on this area usually suffer slope instabilities that cause substantial damage and a very high maintenance cost. In order to assess the type of instability mechanisms affecting these heterogeneous carbonatic slopes, in this paper a wide inventory of 194 Flysch rock slopes has been performed, reporting the existing lithologies, their competence and their relative arrangement and the geometrical relationship between bedding and the slope and the associated instability mechanism. All these data have been jointly used for performing an instability mechanisms characterization. For systematically characterizing the wide type of complex rock exposures existing in the study area, they are divided into basic units referred as lithological pattern columns to which the different observed instability mechanisms are associated. Inventoried instability mechanisms are diverse and sometimes are combined with each other. Rockfalls are a very common instability mechanism associated to the differential weathering and sapping of the marly lithologies which are present in a wide number of geometrical combinations. The other instability mechanisms closely depend on the combination of the geometrical and lithological parameters. Therefore, this work provides a new basic tool which can be easily used during preliminary project stages for knowing the instability mechanisms which can affect rock slopes excavated on carbonatic Flysch heterogeneous geological formations.