9 resultados para Foam.

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decomposition of azodicarbonamide, used as foaming agent in PVC—plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min−1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g−1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol−1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of flexible polyurethane foam has been studied under different conditions by thermogravimetric analysis (TG), thermogravimetric analysis-infrared spectrometry (TG-IR) and thermogravimetric analysis-mass spectrometry (TG-MS). For the kinetic study, dynamic and dynamic+isothermal runs were performed at different heating rates (5, 10 and 20 °C min−1) in three different atmospheres (N2, N2:O2 4:1 and N2:O2 9:1). Two reaction models were obtained, one for the pyrolysis and another for the combustion degradation (N2:O2 4:1 and N2:O2 9:1), simultaneously correlating the experimental data from the dynamic and dynamic+isothermal runs at different heating rates. The pyrolytic model considered consisted of two consecutive reactions with activation energies of 142 and 217.5 kJ mol−1 and reaction orders of 0.805 and 1.246. Nevertheless, to simulate the experimental data from the combustion runs, three consecutive reactions were employed with activation energies of 237.9, 103.5 and 120.1 kJ mol−1, and reaction orders of 2.003, 0.778 and 1.025. From the characterization of the sample employing TG-IR and TG-MS, the results obtained showed that the FPUF, under an inert atmosphere, started the decomposition breaking the urethane bond to produce long chains of ethers which were degraded immediately in the next step. However, under an oxidative atmosphere, at the first step not only the urethane bonds were broken but also some ether polyols started their degradation which finished at the second step producing a char that was degraded at the last stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen del póster presentado en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal decomposition of flexible polyurethane foam (FPUF) was studied under nitrogen and air atmospheres at 550 °C and 850 °C using a laboratory scale reactor to analyse the evolved products. Ammonia, hydrogen cyanide and nitrile compounds were obtained in high yields in pyrolysis at the lower temperature, whereas at 850 °C polycyclic aromatic hydrocarbons (PAHs) and other semivolatile compounds, especially compounds containing nitrogen (benzonitrile, aniline, quinolone and indene) were the most abundant products. Different behaviour was observed in the evolution of polychlorodibenzo-p-dioxins and furans (PCDD/Fs) at 550 °C and 850 °C. At 550 °C, the less chlorinated congeners, mainly PCDF, were more abundant. Contrarily, at 850 °C the most chlorinated PCDD were dominant. In addition, the total yields of PCDD/Fs in the pyrolysis and combustion runs at 850 °C were low and quite similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N2:O2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transitions and reactions involved in the thermal processing of binary mixtures of polyethylene and poly(ethylene-co-vinyl acetate) copolymers with different concentrations of a foaming agent (azodicarbonamide) were studied using differential scanning calorimetry (DSC). The effect of ZnO as a kicker also was discussed. The temperature at the maximum rate and the heat evolved were measured for all the processes—melting, transitions, and reactions—all the mixtures prepared were measured and compared. Azodicarbonamide decomposed differently depending on the polymeric matrix. These data can be very useful for the plastic processing industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentation submitted to PSE Seminar, Chemical Engineering Department, Center for Advanced Process Design-making (CAPD), Carnegie Mellon University, Pittsburgh (USA), October 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Furniture waste is mainly composed of wood and upholstery foam (mostly polyurethane foam). Both of these have a high calorific value, therefore, energy recovery would be an appropriate process to manage these wastes. Nevertheless, the drawback is that the energy content of these wastes is limited due to their low density mainly that of upholstery foam. Densification of separate foam presents difficulties due to its elastic character. The significance of this work lies in obtaining densified material by co-densification of furniture wood waste and polyurethane foam waste. Densification of furniture wood and the co-densification of furniture wood waste with polyurethane foam have been studied. On the one hand, the parameters that have an effect on the quality of the furniture waste briquettes have been analysed, i.e., moisture content, compaction pressure, presence of lignin, etc. The maximum weight percentage of polyurethane foam that can be added with furniture wood waste to obtain durable briquettes and the optimal moisture were determined. On the other hand, some parameters were analysed in order to evaluate the possible effect on the combustion. The chemical composition of waste wood was compared with untreated wood biomass; the higher nitrogen content and the concentration of some metals were the most important differences, with a significant difference of Ti content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in Mg foams is increasing due to their potential use as biomaterials. Fabrication methods determine to a great extent their structure and, in some cases, may pollute the foam. In this work Mg foams are fabricated by a replica method that uses as skeleton packed spheres of active carbon, a material widely utilized in medicine. After Mg infiltration, carbon particles are eliminated by an oxidizing heat treatment. The latter covers Mg with MgO which improves performance. In particular, oxidation retards degradation of the foam, as the polarization curves of the Mg foam with and without oxide indicate. The sphericity and regularity of C particles allows control of the structure of the produced open-cell foams.