3 resultados para Field Admitting (one-dimensional) Local Class Field Theory
em Universidad de Alicante
Resumo:
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N noninteracting sites connecting both of them. The interdot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of a small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the interdot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dot spins by the spin in the finite chain at the Fermi level. As the coupling to the interdot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multiconfigurational Lanczos calculations and finite-U slave-boson mean-field theory at T=0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
Resumo:
The purpose of this paper is to analyze the quasi-elastic deformational behavior that has been induced by groundwater withdrawal of the Tertiary detrital aquifer of Madrid (Spain). The spatial and temporal evolution of ground surface displacement was estimated by processing two datasets of radar satellite images (SAR) using Persistent Scatterer Interferometry (PSI). The first SAR dataset was acquired between April 1992 and November 2000 by ERS-1 and ERS-2 satellites, and the second one by the ENVISAT satellite between August 2002 and September 2010. The spatial distribution of PSI measurements reveals that the magnitude of the displacement increases gradually towards the center of the well field area, where approximately 80 mm of maximum cumulated displacement is registered. The correlation analysis made between displacement and piezometric time series provides a correlation coefficient greater than 85% for all the wells. The elastic and inelastic components of measured displacements were separated, observing that the elastic component is, on average, more than 4 times the inelastic component for the studied period. Moreover, the hysteresis loops on the stress–strain plots indicate that the response is in the elastic range. These results demonstrate the quasi-elastic behavior of the aquifer. During the aquifer recovery phase ground surface uplift almost recovers from the subsidence experienced during the preceding extraction phase. Taking into account this unique aquifer system, a one dimensional elastic model was calibrated in the period 1997–2000. Subsequently, the model was used to predict the ground surface movements during the period 1992–2010. Modeled displacements were validated with PSI displacement measurements, exhibiting an error of 13% on average, related with the inelastic component of deformation occurring as a long-term trend in low permeability fine-grained units. This result further demonstrates the quasi-elastic deformational behavior of this unique aquifer system.
Resumo:
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.