8 resultados para FIXED-POINT THEORY
em Universidad de Alicante
Resumo:
The aim of the present paper is to study the periodic orbits of a perturbed self excited rigid body with a fixed point. For studying these periodic orbits we shall use averaging theory of first order.
Resumo:
Our eyes never remain still. Even when we stare at a fixed point, small involuntary movements take place in our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with and without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasibility of these models to be incorporated in future neuroprostheses. For this purpose each retina model has been stimulated with natural scene images in two experiments. Results are discussed from the point of view of a neuroprosthesis development.
Resumo:
Scanning tunneling microscopy permits us to image the Kondo resonance of a single magnetic atom adsorbed on a metallic surface. When the magnetic impurity is placed at the focus of an elliptical quantum corral, a Kondo resonance has been recently observed both on top of the impurity and on top of the focus where no magnetic impurity is present. This projection of the Kondo resonance to a remote point on the surface is referred to as quantum mirage. We present a quantum mechanical theory for the quantum mirage inside an ideal quantum corral and predict that the mirage will occur in corrals with shapes other than elliptical.
Resumo:
The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses.
Resumo:
It is possible to view the relations between mathematics and natural language from different aspects. This relation between mathematics and language is not based on just one aspect. In this article, the authors address the role of the Subject facing Reality through language. Perception is defined and a mathematical theory of the perceptual field is proposed. The distinction between purely expressive language and purely informative language is considered false, because the subject is expressed in the communication of a message, and conversely, in purely expressive language, as in an exclamation, there is some information. To study the relation between language and reality, the function of ostensibility is defined and propositions are divided into ostensives and estimatives.
Resumo:
Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.
Resumo:
We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary excitations are found by means of Bogoliubov transformation, as a function of the two variables that can be controlled experimentally, the applied magnetic field and the chain length. Three main results are found. First, because of the noncollinear nature of the classical ground state, there is a significant zero-point reduction of the ground-state magnetization of the spin spiral. Second, there is a critical external field from which the ground state changes from chiral spin ground state to collinear ferromagnetic order. The character of the two lowest-energy spin waves changes from edge modes to confined bulk modes over this critical field. Third, in the spin-spiral state, the spin-wave spectrum exhibits oscillatory behavior as function of the chain length with the same period of the spin helix.
Resumo:
In this article, the authors propose a theory of the truth value of propositions from a logic-mathematical point of view. The work that the authors present is an attempt to address this question from an epistemological, linguistic, and logical-mathematical point of view. What is it to exist and how do we define existence? The main objective of this work is an approach to the first of these questions. We leave a more thorough treatment of the problem of existence for future works.