2 resultados para Experimental literature

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature and the composition of the vapor–liquid–liquid equilibrium (VLLE) and the vapor–liquid equilibrium (VLE) of a ternary mixture of water–n-butanol–cyclohexane were measured at atmospheric pressure (101.32 kPa) in a modified dynamic recirculating still. As found in the literature, the experimental data obtained reveal a ternary azeotrope at 341.86 K with a mole fraction composition of 0.281, 0.034, and 0.685 water, n-butanol, and cyclohexane, respectively. The liquid–liquid equilibrium (LLE) compositions were measured at a constant temperature of 313.15 K and compared with data in the literature collected at other temperatures. Thermodynamic consistency of all the experimental data was demonstrated. The universal quasichemical (UNIQUAC) and the nonrandom two-liquid (NRTL) thermodynamic models were used to correlate the VLE and LLE data, while the original universal functional (UNIFAC) model was used to compare the predicted data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) produced in huge quantities in the manufacture of polycarbonate plastics and epoxy resins. It is present in most humans in developed countries, acting as a xenoestrogen and it is considered an environmental risk factor associated to several diseases. Among the whole array of identified mechanisms by which BPA can interfere with physiological processes in living organisms, changes on ion channel activity is one of the most poorly understood. There is still little evidence about BPA regulation of ion channel expression and function. However, this information is key to understand how BPA disrupts excitable and non-excitable cells, including neurons, endocrine cells and muscle cells. This report is the result of a comprehensive literature review on the effects of BPA on ion channels. We conclude that there is evidence to say that these important molecules may be key end-points for EDCs acting as xenoestrogens. However, more research on channel-mediated BPA effects is needed. Particularly, mechanistic studies to unravel the pathophysiological actions of BPA on ion channels at environmentally relevant doses.