6 resultados para Excitons

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have observed a large spin splitting between "spin" +1 and -1 heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs quantum wells in the absence of any external magnetic field. Time-resolved photoluminescence spectroscopy, under excitation with circularly polarized light, reveals that, for high excitonic density and short times after the pulsed excitation, the emission from majority excitons lies above that of minority ones. The amount of the splitting, which can be as large as 50% of the binding energy, increases with excitonic density and presents a time evolution closely connected with the degree of polarization of the luminescence. Our results are interpreted on the light of a recently developed model, which shows that, while intraexcitonic exchange interaction is responsible for the spin relaxation processes, exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K: spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spin dynamics of a single Mn atom in a laser driven CdTe quantum dot is addressed theoretically. Recent experimental results [ Gall et al. Phys. Rev. Lett. 102 127402 (2009);  Goryca et al. Phys. Rev. Lett. 103 087401 (2009)  Gall et al. Phys. Rev. B 81 245315 (2010)] show that it is possible to induce Mn spin polarization by means of circularly polarized optical pumping. Pumping is made possible by the faster Mn spin relaxation in the presence of the exciton. Here we discuss different Mn spin-relaxation mechanisms: first, Mn-phonon coupling, which is enhanced in the presence of the exciton; second, phonon induced hole spin relaxation combined with carrier-Mn spin-flip coupling and photon emission results in Mn spin relaxation. We model the Mn spin dynamics under the influence of a pumping laser that injects excitons into the dot, taking into account exciton-Mn exchange and phonon induced spin relaxation of both Mn and holes. Our simulations account for the optically induced Mn spin pumping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a theoretical analysis of a spin-dependent multicomponent condensate in two dimensions. The case of a condensate of resonantly photoexcited excitons having two different spin orientations is studied in detail. The energy and the chemical potentials of this system depend strongly on the spin polarization. When electrons and holes are located in two different planes, the condensate can be either totally spin polarized or spin unpolarized, a property that is measurable. The phase diagram in terms of the total density and electron-hole separation is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that a quasi-two dimensional condensate of optically active excitons emits coherent light even in the absence of population inversion. This allows an unambiguous and clear experimental detection of the condensed phase. We prove that, due to the exciton–photon coupling, quantum and thermal fluctuations do not destroy condensation at finite temperature. Suitable conditions to achieve condensation are temperatures of a few K for typical exciton densities and the use of a pulsed and preferably circularly polarized, laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New materials for OLED applications with low singlet–triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet–triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet–triplet transition. Finally, we quantitatively correlate the singlet–triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies.