6 resultados para Ethylene glycol
em Universidad de Alicante
Resumo:
Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.
Resumo:
The solubility, density, refractive index, and viscosity data for the ethylene glycol + CsBr + H2O, 1,2-propanediol + CsBr + H2O, and glycerin + CsBr + H2O ternary systems have been determined at (288.15, 298.15, and 308.15) K. In all cases, the solubility of CsBr in aqueous solutions was decreased significantly due to the presence of polyhydric alcohol. The liquid–solid equilibrium experimental data were correlated using the NRTL (nonrandom two-liquid) activity coefficient model, considering nondissociation of the dissolved salt in the liquid phase, and new interaction parameters were estimated. The mean deviations between calculated and experimental compositions were low, showing the good descriptive quality and applicability of the NRTL model. The refractive indices, densities, and viscosities for the unsaturated solutions of the three ternary systems have also been measured at three temperatures. Values for all of the properties were correlated with the salt concentrations and proportions of polyhydric alcohol in the solutions.
Resumo:
The disintegration under composting conditions of films based on poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends and intended for food packaging was studied. Two different plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC), were used to limit the inherent brittleness of both biopolymers. Neat PLA, plasticized PLA and PLA–PHB films were processed by melt-blending and compression molding and they were further treated under composting conditions in a laboratory-scale test at 58 ± 2 °C. Disintegration levels were evaluated by monitoring their weight loss at different times: 0, 7, 14, 21 and 28 days. Morphological changes in all formulations were followed by optical and scanning electron microscopy (SEM). The influence of plasticizers on the disintegration of PLA and PLA–PHB blends was studied by evaluating their thermal and nanomechanical properties by thermogravimetric analysis (TGA) and the nanoindentation technique, respectively. Meanwhile, structural changes were followed by Fourier transformed infrared spectroscopy (FTIR). The ability of PHB to act as nucleating agent in PLA–PHB blends slowed down the PLA disintegration, while plasticizers speeded it up. The relationship between the mesolactide to lactide forms of PLA was calculated with a Pyrolysis–Gas Chromatography–Mass Spectrometry device (Py–GC/MS), revealing that the mesolactide form increased during composting.
Resumo:
Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.
Resumo:
The synthesis of different tetrahydroisoquinolines using choline chloride : ethylene glycol as a deep eutectic solvent (DES) and copper(II) oxide impregnated on magnetite as a catalyst has been accomplished successfully. The copper catalyst amount is the lowest loading ever reported. The presence of DES showed to be essential since the reaction in the absence of this medium did not proceed. A direct proportional relationship was found between the conductivity of DES medium and the yield obtained. The DES and the catalyst could be reused up to ten times without any detrimental effect on the yield of the reaction, with the aerobic conditions making the protocol highly sustainable, where the only waste is water.
Resumo:
The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.