4 resultados para Estado del peso
em Universidad de Alicante
Resumo:
Fundamento: La asociación de la inmigración con el bajo peso al nacimiento (BP) y el parto pretérmino (PP) es un importante indicador de inequidades en salud. El objetivo de este estudio es analizar las diferencias entre BP y el PP según la nacionalidad de la madre. Métodos: Los datos proceden del Boletín Estadístico de Nacimientos. Durante el período de estudio hubo 1.878.718 recién nacidos. La nacionalidad fue considerada como variable de exposición (española-inmigrante). Las variables de efecto son BP (nacimientos de 37 o más semanas de gestación con un peso inferior a 2.500 gramos) y PP (recién nacidos con menos de 37 semanas de gestación). Se calcularon odds ratios simples y ajustadas por posibles variables de confusión mediante regresión logística. Resultados: La prevalencia de BP y PP entre las mujeres españolas fue de 7,9% y 3,2% respectivamente, mientras que en las extranjeras fue de 7,3% y 2,4% respectivamente. En comparación con las españolas, el riesgo más bajo de PP lo presentaron las mujeres procedentes de África del Norte (ORa= 0,77 IC95%0,74-0,80). Con respecto al BP el riesgo más bajo se observó en madres de Sudamérica (ORa=0,62 IC95%0,59-0,65) y Europa del Este (ORa=0,65 IC95%0,60-0,71). Conclusión: Los recién nacidos de madre extranjera presentan menos riesgo de BP y PP que los autóctonos, posiblemente como consecuencia del sesgo por la condición de ser inmigrante sano y por la menor frecuencia de prácticas de riesgo durante la gestación de las mujeres inmigrantes.
Resumo:
Esta investigación efectúa una revisión de los proyectos internacionales de opinión pública que estudian, de forma comparada, las opiniones y valores relacionados con la provisión del bienestar social. Las dificultades metodológicas que plantea la comparación entre diferentes países es elevada. No obstante, de dicho estudio exploratorio se pueden extraer varias conclusiones relevantes. Así, la opinión pública entiende que la obligación de proveer de bienestar social es del gobierno y de la administración pública. No es una responsabilidad de la sociedad civil o de las organizaciones que la vertebran. El papel que se atribuye a las instituciones de caridad o del sector privado es mínimo. La reducción de la intervención del estado en el bienestar, es valorada de forma negativa en todos los países considerados. En la atención a la pobreza y la reducción de desigualdades también se atribuye el papel central al gobierno y el estado. En general, tanto los planteamientos individualistas, donde cada individuo debe resolver sus problemas por sí solo, como el planteamiento que traslada a las organizaciones de la sociedad civil la responsabilidad de la protección social, no tienen acogida en la opinión pública de los países considerados. La opinión sobre la necesidad de que el gobierno intervenga para reducir las diferencias en los ingresos, debe interpretarse en un contexto general donde la impresión más extendida afirma que la desigualdad se acentúa e incrementa en los últimos años. Una desigualdad considerada como un problema grave, e importante para la democracia en el país. En cierto sentido la desigualdad, la pobreza y la responsabilidad del gobierno para atenuar una y evitar la otra, son más que evidentes, así como su lectura desde la óptica de la legitimación democrática del sistema. Nos encontramos en una situación paradójica donde, si bien queda perfectamente claro que la responsabilidad de la lucha contra la pobreza es de los gobiernos, como veremos, en general la confianza en que estos gobiernos van a actuar e intervenir correctamente es bastante baja. La crisis iniciada en 2007 y el desmantelamiento del estado de bienestar que se efectúa en varias sociedades del sur de Europa se producen en este contexto.
Resumo:
Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.