1 resultado para Erdos-Kac central limit theorem
em Universidad de Alicante
Filtro por publicador
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Adam Mickiewicz University Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (135)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (29)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Câmara dos Deputados (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (17)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (83)
- CentAUR: Central Archive University of Reading - UK (5)
- Center for Jewish History Digital Collections (3)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (135)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- Duke University (21)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (50)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (4)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (48)
- Indian Institute of Science - Bangalore - Índia (158)
- Infoteca EMBRAPA (24)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Queensland University of Technology - ePrints Archive (129)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (9)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (5)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This note provides an approximate version of the Hahn–Banach theorem for non-necessarily convex extended-real valued positively homogeneous functions of degree one. Given p : X → R∪{+∞} such a function defined on the real vector space X, and a linear function defined on a subspace V of X and dominated by p (i.e. (x) ≤ p(x) for all x ∈ V), we say that can approximately be p-extended to X, if is the pointwise limit of a net of linear functions on V, every one of which can be extended to a linear function defined on X and dominated by p. The main result of this note proves that can approximately be p-extended to X if and only if is dominated by p∗∗, the pointwise supremum over the family of all the linear functions on X which are dominated by p.