4 resultados para Equilibrium Poly(hema-co-thfma) Hydrogels

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transitions and reactions involved in the thermal processing of binary mixtures of polyethylene and poly(ethylene-co-vinyl acetate) copolymers with different concentrations of a foaming agent (azodicarbonamide) were studied using differential scanning calorimetry (DSC). The effect of ZnO as a kicker also was discussed. The temperature at the maximum rate and the heat evolved were measured for all the processes—melting, transitions, and reactions—all the mixtures prepared were measured and compared. Azodicarbonamide decomposed differently depending on the polymeric matrix. These data can be very useful for the plastic processing industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, mixtures of vacuum gas oil and low density polyethylene, a major component of common industrial and consumer household plastics, were pyrolytically co-processed in a fluid catalytic cracking (FCC) riser reactor as a viable alternative for the energy and petrochemical revalorisation of plastic wastes into valuable petrochemical feedstocks and fuel within an existing industrial technology. Using equilibrium FCC catalyst, the oil–polymer blends were catalytically cracked at different processing conditions of temperatures between 773 K and 973 K and catalyst feed ratios of 5:1, 7:1 and 10:1. The influence of each of these processing parameters on the cracking gas and liquid yield patterns were studied and presented. Further analysed and presented are the different compositional distributions of the obtained liquids and gaseous products. The analysis of the results obtained revealed that with very little modifications to existing process superstructure, yields and compositional distributions of products from the fluid catalytic cracking of the oil–polymer blend in many cases were very similar to those of the processed oil feedstock, bringing to manifest the viability of the feedstock co-processing without significant detriments to FCC product yields and quality.