3 resultados para Epistolary genre

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis doctoral con mención europea en procesamiento del lenguaje natural realizada en la Universidad de Alicante por Ester Boldrini bajo la dirección del Dr. Patricio Martínez-Barco. El acto de defensa de la tesis tuvo lugar en la Universidad de Alicante el 23 de enero de 2012 ante el tribunal formado por los doctores Manuel Palomar (Universidad de Alicante), Dr. Paloma Moreda (UA), Dr. Mariona Taulé (Universidad de Barcelona), Dr. Horacio Saggion (Universitat Pompeu Fabra) y Dr. Mike Thelwall (University of Wolverhampton). Calificación: Sobresaliente Cum Laude por unanimidad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a multimodal and interactive prototype to perform music genre classification is presented. The system is oriented to multi-part files in symbolic format but it can be adapted using a transcription system to transform audio content in music scores. This prototype uses different sources of information to give a possible answer to the user. It has been developed to allow a human expert to interact with the system to improve its results. In its current implementation, it offers a limited range of interaction and multimodality. Further development aimed at full interactivity and multimodal interactions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Twitter has become one of the most important microblogging services of the Web 2.0. Among the possible uses it allows, it can be employed for communicating and broadcasting information in real time. The goal of this research is to analyze the task of automatic tweet generation from a text summarization perspective in the context of the journalism genre. To achieve this, different state-of-the-art summarizers are selected and employed for producing multi-lingual tweets in two languages (English and Spanish). A wide experimental framework is proposed, comprising the creation of a new corpus, the generation of the automatic tweets, and their assessment through a quantitative and a qualitative evaluation, where informativeness, indicativeness and interest are key criteria that should be ensured in the proposed context. From the results obtained, it was observed that although the original tweets were considered as model tweets with respect to their informativeness, they were not among the most interesting ones from a human viewpoint. Therefore, relying only on these tweets may not be the ideal way to communicate news through Twitter, especially if a more personalized and catchy way of reporting news wants to be performed. In contrast, we showed that recent text summarization techniques may be more appropriate, reflecting a balance between indicativeness and interest, even if their content was different from the tweets delivered by the news providers.