2 resultados para Environmental Conditions
em Universidad de Alicante
Resumo:
In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.
Resumo:
Many studies suggest that migratory birds are expected to travel more quickly during spring, when they are en route to the breeding grounds, in order to ensure a high-quality territory. Using data recorded by means of Global Positioning System satellite tags, we analysed at three temporal scales (hourly, daily and overall journey) seasonal differences in migratory performance of the booted eagle (Aquila pennata), a soaring raptor migrating between Europe and tropical Africa, taking into account environmental conditions such as wind, thermal uplift and day length. Unexpectedly, booted eagles showed higher travel rates (hourly speed, daily distance, overall migration speed and overall straightness) during autumn, even controlling for abiotic factors, probably thanks to higher hourly speeds, more straight routes and less non-travelling days during autumn. Tailwinds were the main environmental factor affecting daily distance. During spring, booted eagles migrated more quickly when flying over the Sahara desert. Our results raise new questions about which ecological and behavioural reasons promote such unexpected faster speeds in autumn and not during spring and how events occurring in very different regions can affect migratory performance, interacting with landscape characteristics, weather conditions and flight behaviour.