2 resultados para Enrico Fermi Atomic Power Plant (Mich.)

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microwave-based thermal nebulizer (MWTN) has been employed for the first time as on-line preconcentration device in inductively coupled plasma atomic emission spectrometry (ICP-AES). By the appropriate selection of the experimental conditions, the MWTN could be either operated as a conventional thermal nebulizer or as on-line analyte preconcentration and nebulization device. Thus, when operating at microwave power values above 100 W and highly concentrated alcohol solutions, the amount of energy per solvent mass liquid unit (EMR) is high enough to completely evaporate the solvent inside the system and, as a consequence, the analyte is deposited (and then preconcentrated) on the inner walls of the MWTN capillary. When reducing the EMR to the appropriate value (e.g., by reducing the microwave power at a constant sample uptake rate) the retained analyte is swept along by the liquid-gas stream and an analyte-enriched aerosol is generated and next introduced into the plasma cell. Emission signals obtained with the MWTN operating in preconcentration-nebulization mode improved when increasing preconcentration time and sample uptake rate as well as when decreasing the nozzle inner diameter. When running with pure ethanol solution at its optimum experimental conditions, the MWTN in preconcentration-nebulization mode afforded limits of detection up to one order of magnitude lowers than those obtained operating the MWTN exclusively as a nebulizer. To validate the method, the multi-element analysis (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) of different commercial spirit samples in ICP-AES has been performed. Analyte recoveries for all the elements studied ranged between 93% and 107% and the dynamic linear range covered up to 4 orders of magnitude (i.e. from 0.1 to 1000 μg L−1). In these analysis, both MWTN operating modes afforded similar results. Nevertheless, the preconcentration-nebulization mode permits to determine a higher number of analytes due to its higher detection capabilities.