4 resultados para Empirical Mode Decomposition, vibration-based analysis, damage detection, signal decomposition
em Universidad de Alicante
Resumo:
Background: Celiac disease (CD) has a negative impact on the health-related quality of life (HRQL) of affected patients. Although HRQL and its determinants have been examined in Spanish CD patients specifically recruited in hospital settings, these aspects of CD have not been assessed among the general Spanish population. Methods: An observational, transversal study of a non-randomized, representative sample of adult celiac patients throughout all of Spain's Autonomous Regions. Subjects were recruited through celiac patient associations. A Spanish version of the self-administered Celiac Disease-Quality of Life (CD-QOL) questionnaire was used. Determinant factors of HRQL were assessed with the aid of multivariate analysis to control for confounding factors. Results: We analyzed the responses provided by 1,230 patients, 1,092 (89.2%) of whom were women. The overall mean value for the CD-QOL index was 56.3 ± 18.27 points. The dimension that obtained the most points was dysphoria, with 81.3 ± 19.56 points, followed by limitations with 52.3 ± 23.43 points; health problems, with 51.6 ± 26.08 points, and inadequate treatment, with 36.1 ± 21.18 points. Patient age and sex, along with time to diagnosis, and length of time on a gluten-free diet were all independent determinant factors of certain dimensions of HRQL: women aged 31 to 40 expressed poorer HRQL while time to diagnosis and length of time on a gluten-free diet were determinant factors for better HRQL scores. Conclusions: The HRQL of adult Spanish celiac subjects is moderate, improving with the length of time patients remain on a gluten-free diet.
Resumo:
There is an increasing concern to reduce the cost and overheads during the development of reliable systems. Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened). This paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications running in different microprocessors. Results show a significant improvement in accuracy compared to previous approaches and regardless of the underlying architecture.
Resumo:
Comunicación presentada en EVACES 2011, 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Varenna (Lecco), Italy, October 3-5, 2011.
Resumo:
In this paper, a novel approach for exploiting multitemporal remote sensing data focused on real-time monitoring of agricultural crops is presented. The methodology is defined in a dynamical system context using state-space techniques, which enables the possibility of merging past temporal information with an update for each new acquisition. The dynamic system context allows us to exploit classical tools in this domain to perform the estimation of relevant variables. A general methodology is proposed, and a particular instance is defined in this study based on polarimetric radar data to track the phenological stages of a set of crops. A model generation from empirical data through principal component analysis is presented, and an extended Kalman filter is adapted to perform phenological stage estimation. Results employing quad-pol Radarsat-2 data over three different cereals are analyzed. The potential of this methodology to retrieve vegetation variables in real time is shown.