8 resultados para Embodied energy in building materials

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas storage on porous materials (ANG) is a promising alternative to conventional on-board compressed (CNG) or liquefied natural gas (LNG). To date, Metal–organic framework (MOF) materials have apparently been the only system published in the literature that is able to reach the new Department of Energy (DOE) value of 263 cm3 (STP: 273.15 K, 1 atm)/cm3; however, this value was obtained by using the ideal single-crystal density to calculate the volumetric capacity. Here, we prove experimentally, and for the first time, that properly designed activated carbon materials can really achieve the new DOE value while avoiding the additional drawback usually associated with MOF materials (i.e., the low mechanical stability under pressure (conforming), which is required for any practical application).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new Spanish legislation in Energy Saving, similar to European regulation, provides new technical requirements to adequate technical solutions used in integral rehabilitation of existing buildings. The aim of this paper is to present, analyze and discuss the main thermal insulation constructive solutions best suited to a Mediterranean climate, and conclude on their suitability under the legislation in Energy Saving. The proposed methodology is based on the most usual constructive solutions in integral rehabilitation of buildings by analyzing their outstanding design features, by studying its construction details and then by applying the software provided by the Spanish legislation of energy efficiency in buildings. The results of the study evaluate and classify several solutions for façade rehabilitation according to energy efficiency criteria and their suitability for this type of weather, verifying the necessity of using software applications in energy saving for the proper design of constructive solutions in building rehabilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New materials for OLED applications with low singlet–triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet–triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet–triplet transition. Finally, we quantitatively correlate the singlet–triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though it has been proved that a fully thermally coupled distillation (TCD) system minimizes the energy used by a sequence of columns, it is well-known that vapor/liquid transfers between different sections produce an unavoidable excess of vapor (liquid) in some of them, increasing both the investment and operating costs. It is proposed here to take advantage of this situation by extracting the extra vapor/liquid and subjecting it to a direct/reverse vapor compression cycle. This new arrangement restores the optimal operating conditions of some of the affected sections with energy savings of around 20–30% compared with conventional TCD columns. Various examples, including the direct and reverse vapor recompression cycles, are presented. Furthermore, in each example, all possible modes of distillation (direct, indirect and Petlyuk distillation) with and without vapor recompression cycles (VRC) are compared to ensure that this approach delivers the best results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper illustrates how to design a visual experiment to measure color differences in gonioapparent materials and how to assess the merits of different advanced color-difference formulas trying to predict the results of such experiment. Successful color-difference formulas are necessary for industrial quality control and artificial color-vision applications. A color- difference formula must be accurate under a wide variety of experimental conditions including the use of challenging materials like, for example, gonioapparent samples. Improving the experimental design in a previous paper [Melgosaet al., Optics Express 22, 3458-3467 (2014)], we have tested 11 advanced color-difference formulas from visual assessments performed by a panel of 11 observers with normal colorvision using a set of 56 nearly achromatic colorpairs of automotive gonioapparent samples. Best predictions of our experimental results were found for the AUDI2000 color-difference formula, followed by color-difference formulas based on the color appearance model CIECAM02. Parameters in the original weighting function for lightness in the AUDI2000 formula were optimized obtaining small improvements. However, a power function from results provided by the AUDI2000 formula considerably improved results, producing values close to the inter-observer variability in our visual experiment. Additional research is required to obtain a modified AUDI2000 color-difference formula significantly better than the current one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the use of directories of open access repositories worldwide (DOARW) to search Spanish repositories containing learning objects in the field of building engineering (BE). Results show that DOARW are powerful tools, but deficiencies (indicated in this study) have to be solved in order to obtain more accurate searches, and to facilitate repository-finding for potential users who are seeking learning objects (LOs) for reuse. Aiming to contribute to the promotion of the reuse of Spanish LOs, this study exposes to the academic community all existing Spanish repositories with LOs, and in particular, the repositories that contain LOs in the field of BE. This paper also studies the critical mass of available content (LOs) in the field of BE in Spain. It has been found to be low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On a global level the population growth and increase of the middle class lead to a growing demand on material resources. The built environment has an enormous impact on this scarcity. In addition, a surplus of construction and demolition waste is a common problem. The construction industry claims to recycle 95% of this waste but this is in fact mainly downcycling. Towards the circular economy, the quality of reuse becomes of increasing importance. Buildings are material warehouses that can contribute to this high quality reuse. However, several aspects to achieve this are unknown and a need for more insight into the potential for high quality reuse of building materials exists. Therefore an instrument has been developed that determines the circularity of construction waste in order to maximise high quality reuse. The instrument is based on three principles: ‘product and material flows in the end of life phase’, ‘future value of secondary materials and products’ and ‘the success of repetition in a new life cycle’. These principles are further divided into a number of criteria to which values and weighting factors are assigned. A degree of circularity can then be determined as a percentage. A case study for a typical 70s building is carried out. For concrete, the circularity is increased from 25% to 50% by mapping out the potential for high quality reuse. During the development of the instrument it was clarified that some criteria are difficult to measure. Accurate and reliable data are limited and assumptions had to be made. To increase the reliability of the instrument, experts have reviewed the instrument several times. In the long-term, the instrument can be used as a tool for quantitative research to reduce the amount of construction and demolition waste and contribute to the reduction of raw material scarcity.