4 resultados para Elliptic Curve, Group Law, Point Addition, Point Doubling, Projective Coordinates
em Universidad de Alicante
Resumo:
Objectives: To design and validate a questionnaire to measure visual symptoms related to exposure to computers in the workplace. Study Design and Setting: Our computer vision syndrome questionnaire (CVS-Q) was based on a literature review and validated through discussion with experts and performance of a pretest, pilot test, and retest. Content validity was evaluated by occupational health, optometry, and ophthalmology experts. Rasch analysis was used in the psychometric evaluation of the questionnaire. Criterion validity was determined by calculating the sensitivity and specificity, receiver operator characteristic curve, and cutoff point. Testeretest repeatability was tested using the intraclass correlation coefficient (ICC) and concordance by Cohen’s kappa (k). Results: The CVS-Q was developed with wide consensus among experts and was well accepted by the target group. It assesses the frequency and intensity of 16 symptoms using a single rating scale (symptom severity) that fits the Rasch rating scale model well. The questionnaire has sensitivity and specificity over 70% and achieved good testeretest repeatability both for the scores obtained [ICC 5 0.802; 95% confidence interval (CI): 0.673, 0.884] and CVS classification (k 5 0.612; 95% CI: 0.384, 0.839). Conclusion: The CVS-Q has acceptable psychometric properties, making it a valid and reliable tool to control the visual health of computer workers, and can potentially be used in clinical trials and outcome research.
Resumo:
Tema 5. Actividad voluntaria nº 3.
Resumo:
Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.
Resumo:
The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.