3 resultados para Electron-microscope

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new interaction between insects and carnivorous plants is reported from Brazil. Larvae of the predatory flower fly Toxomerus basalis (Diptera: Syrphidae: Syrphinae) have been found scavenging on the sticky leaves of several carnivorous sundew species (Drosera, Droseraceae) in Minas Gerais and São Paulo states, SE Brazil. This syrphid apparently spends its whole larval stage feeding on prey trapped by Drosera leaves. The nature of this plant-animal relationship is discussed, as well as the Drosera species involved, and locations where T. basalis was observed. 180 years after the discovery of this flower fly species, its biology now has been revealed. This is (1) the first record of kleptoparasitism in the Syrphidae, (2) a new larval feeding mode for this family, and (3) the first report of a dipteran that shows a kleptoparasitic relationship with a carnivorous plant with adhesive flypaper traps. The first descriptions of the third instar larva and puparium of T. basalis based on Scanning Electron Microscope analysis are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of single magnetic atoms in a surface via spin-flip assisted tunneling. A particular and intriguing case is the Mn dimer case. We show here that the existing theories for inelastic transport spectroscopy do not explain the observed spin transitions when both atoms are equally coupled to the scanning tunneling microscope tip and the substrate, the most likely experimental situation. The hyperfine coupling to the nuclear spins is shown to lead to a finite excitation amplitude, but the physical mechanism leading to the large inelastic signal observed is still unknown. We discuss some other alternatives that break the symmetry of the system and allow for larger excitation probabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical power of a thick spherical lens and its Coddington shape factor are essential magnitudes that characterize its image quality. Here, we propose an experimental procedure and apparatus that allow accurate determination of those magnitudes for any spherical lens from geometrical measurements. The performance of the technique and the used instruments are simple since it only requires a microscope and an optical mouse. The propose overcomes the drawbacks of other devices that need of the refractive index or may damage the lens surfaces, like spherometers, and provides similar results to those from commercial lensmeters.