3 resultados para Electrochemical mechanism
em Universidad de Alicante
Resumo:
In the present Letter several carbolactones (oxidative products) are obtained under aprotic cathodic conditions in the preparative scaled electrolysis of 1,2-quinones in a divided electrochemical cell and in the presence of oxygen. When 9,10-phenanthrenequinone is reduced 6H-dibenzo[b,d]pyran-6-one and [1,1′-biphenyl]-2,2′-dicarboxylic acid are obtained as major products. In the reduction of 1,2-naphthoquinone, 2-benzopyran-1(1H)-one, and 2-(2-carboxyethenyl)-benzoic acid were formed as main products. The proposed mechanism to explain the formation of these and other products, that involves an electron-transfer reaction to the oxygen in air, is now discussed.
Resumo:
Zeolite templated carbon (ZTC) was electrochemically oxidized under various conditions, and its chemistry and structural evolution were compared to those produced by conventional chemical oxidation. In both oxidation methods, a general loss of the original structure regularity and high surface area was observed with increasing amount of oxidation. However, the electrochemical method showed much better controllability and enabled the generation of a large number of oxygen functional groups while retaining the original structure of the ZTC. Unlike chemical treatments, highly microporous carbons with an ordered 3-D structure, high surface area (ranging between 1900 and 3500 m2/g) and a large number of oxygen groups (O = 11,000–3300 μmol/g), have been prepared by the electrochemical method. Some insights into the electrooxidation mechanism of carbon materials are proposed from the obtained polarization curves, using ZTC as a model carbon material.
Resumo:
The electrochemical reactions of dopamine, catechol and methylcatechol were investigated at tetrahedral amorphous carbon (ta-C) thin film electrodes. In order to better understand the reaction mechanisms of these molecules, cyclic voltammetry with varying scan rates was carried out at different pH values in H2SO4 and PBS solutions. The results were compared to the same redox reactions taking place at glassy carbon (GC) electrodes. All three catechols exhibited quasi-reversible behavior with sluggish electron transfer kinetics at the ta-C electrode. At neutral and alkaline pH, rapid coupled homogeneous reactions followed the oxidation of the catechols to the corresponding o-quinones and led to significant deterioration of the electrode response. At acidic pH, the extent of deterioration was considerably lower. All the redox reactions showed significantly faster electron transfer kinetics at the GC electrode and it was less susceptible toward surface passivation. An EC mechanism was observed for the oxidation of dopamine at both ta-C and GC electrodes and the formation of polydopamine was suspected to cause the passivation of the electrodes.