2 resultados para Electrochemical activation
em Universidad de Alicante
Resumo:
We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500–1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.
Resumo:
Activated carbons were prepared by chemical activation of hydrochars, obtained by hydrothermal carbonisation (HTC) using low cost and abundant precursors such as rye straw and cellulose, with KOH. Hydrochars derived from rye straw were chemically activated using different KOH/precursor ratios, in order to assess the effect of this parameter on their electrochemical behaviour. In the case of cellulose, the influence of the hydrothermal carbonisation temperature was studied by fixing the activating agent/cellulose ratio. Furthermore, N-doped activated carbons were synthesised by KOH activation of hydrochars prepared by HTC from a mixture of glucose with melamine or glucosamine. In this way, N-doped activated carbons were prepared in order to evaluate the influence of nitrogen groups on their electrochemical behaviour in acidic medium. The results showed that parameters such as chemical activation or carbonisation temperature clearly affect the capacitance, since these parameters play a key role in the textural properties of activated carbons. Finally, symmetric capacitors based on activated carbon and N-doped activated carbon were tested at 1.3 V in a two-electrode cell configuration and the results revealed that N-groups improved the capacitance at high current density.