2 resultados para Eigenvector
em Universidad de Alicante
Resumo:
We propose and discuss a new centrality index for urban street patterns represented as networks in geographical space. This centrality measure, that we call ranking-betweenness centrality, combines the idea behind the random-walk betweenness centrality measure and the idea of ranking the nodes of a network produced by an adapted PageRank algorithm. We initially use a PageRank algorithm in which we are able to transform some information of the network that we want to analyze into numerical values. Numerical values summarizing the information are associated to each of the nodes by means of a data matrix. After running the adapted PageRank algorithm, a ranking of the nodes is obtained, according to their importance in the network. This classification is the starting point for applying an algorithm based on the random-walk betweenness centrality. A detailed example of a real urban street network is discussed in order to understand the process to evaluate the ranking-betweenness centrality proposed, performing some comparisons with other classical centrality measures.
Resumo:
The problem of sharing a cost M among n individuals, identified by some characteristic ci∈R+,ci∈R+, appears in many real situations. Two important proposals on how to share the cost are the egalitarian and the proportional solutions. In different situations a combination of both distributions provides an interesting approach to the cost sharing problem. In this paper we obtain a family of (compromise) solutions associated to the Perron’s eigenvectors of Levinger’s transformations of a characteristics matrix A. This family includes both the egalitarian and proportional solutions, as well as a set of suitable intermediate proposals, which we analyze in some specific contexts, as claims problems and inventory cost games.