11 resultados para Effects-Based Approach to Operations
em Universidad de Alicante
Resumo:
This paper presents a new approach to the delineation of local labor markets based on evolutionary computation. The aim of the exercise is the division of a given territory into functional regions based on travel-to-work flows. Such regions are defined so that a high degree of inter-regional separation and of intra-regional integration in both cases in terms of commuting flows is guaranteed. Additional requirements include the absence of overlap between delineated regions and the exhaustive coverage of the whole territory. The procedure is based on the maximization of a fitness function that measures aggregate intra-region interaction under constraints of inter-region separation and minimum size. In the experimentation stage, two variations of the fitness function are used, and the process is also applied as a final stage for the optimization of the results from one of the most successful existing methods, which are used by the British authorities for the delineation of travel-to-work areas (TTWAs). The empirical exercise is conducted using real data for a sufficiently large territory that is considered to be representative given the density and variety of travel-to-work patterns that it embraces. The paper includes the quantitative comparison with alternative traditional methods, the assessment of the performance of the set of operators which has been specifically designed to handle the regionalization problem and the evaluation of the convergence process. The robustness of the solutions, something crucial in a research and policy-making context, is also discussed in the paper.
Resumo:
Different kinds of algorithms can be chosen so as to compute elementary functions. Among all of them, it is worthwhile mentioning the shift-and-add algorithms due to the fact that they have been specifically designed to be very simple and to save computer resources. In fact, almost the only operations usually involved with these methods are additions and shifts, which can be easily and efficiently performed by a digital processor. Shift-and-add algorithms allow fairly good precision with low cost iterations. The most famous algorithm belonging to this type is CORDIC. CORDIC has the capability of approximating a wide variety of functions with only the help of a slight change in their iterations. In this paper, we will analyze the requirements of some engineering and industrial problems in terms of type of operands and functions to approximate. Then, we will propose the application of shift-and-add algorithms based on CORDIC to these problems. We will make a comparison between the different methods applied in terms of the precision of the results and the number of iterations required.
Resumo:
We present a disposable optical sensor for Ascorbic Acid (AA). It uses a polyaniline based electrochromic sensing film that undergoes a color change when exposed to solutions of ascorbic acid at pH 3.0. The color is monitored by a conventional digital camera working with the hue (H) color coordinate. The electrochromic film was deposited on an Indium Tin Oxide (ITO) electrode by cyclic voltammetry and then characterized by atomic force microscopy, electrochemical and spectroscopic techniques. An estimation of the initial rate of H, as ΔH/Δt, is used as the analytical parameter and resulted in the following logarithmic relationship: ΔH/Δt = 0.029 log[AA] + 0.14, with a limit of detection of 17 μM. The relative standard deviation when using the same membrane 5 times was 7.4% for the blank, and 2.6% (for n = 3) on exposure to ascorbic acid in 160 μM concentration. The sensor is disposable and its applicability to pharmaceutical analysis was demonstrated. This configuration can be extended for future handheld configurations.
Resumo:
This paper presents an algorithm for identifying noun-phrase antecedents of pronouns and adjectival anaphors in Spanish dialogues. We believe that anaphora resolution requires numerous sources of information in order to find the correct antecedent of the anaphor. These sources can be of different kinds, e.g., linguistic information, discourse/dialogue structure information, or topic information. For this reason, our algorithm uses various different kinds of information (hybrid information). The algorithm is based on linguistic constraints and preferences and uses an anaphoric accessibility space within which the algorithm finds the noun phrase. We present some experiments related to this algorithm and this space using a corpus of 204 dialogues. The algorithm is implemented in Prolog. According to this study, 95.9% of antecedents were located in the proposed space, a precision of 81.3% was obtained for pronominal anaphora resolution, and 81.5% for adjectival anaphora.
Resumo:
In this paper we present a method to automatically identify linguistic contexts which contain possible causes of emotions or emotional states from Italian newspaper articles (La Repubblica Corpus). Our methodology is based on the interplay between relevant linguistic patterns and an incremental repository of common sense knowledge on emotional states and emotion eliciting situations. Our approach has been evaluated with respect to manually annotated data. The results obtained so far are satisfying and support the validity of the methodology proposed.
Resumo:
Current model-driven Web Engineering approaches (such as OO-H, UWE or WebML) provide a set of methods and supporting tools for a systematic design and development of Web applications. Each method addresses different concerns using separate models (content, navigation, presentation, business logic, etc.), and provide model compilers that produce most of the logic and Web pages of the application from these models. However, these proposals also have some limitations, especially for exchanging models or representing further modeling concerns, such as architectural styles, technology independence, or distribution. A possible solution to these issues is provided by making model-driven Web Engineering proposals interoperate, being able to complement each other, and to exchange models between the different tools. MDWEnet is a recent initiative started by a small group of researchers working on model-driven Web Engineering (MDWE). Its goal is to improve current practices and tools for the model-driven development of Web applications for better interoperability. The proposal is based on the strengths of current model-driven Web Engineering methods, and the existing experience and knowledge in the field. This paper presents the background, motivation, scope, and objectives of MDWEnet. Furthermore, it reports on the MDWEnet results and achievements so far, and its future plan of actions.
Resumo:
The wide range of morphological variations in the “loxurina group” makes taxa identification difficult, and despite several reviews, serious taxonomical confusion remains. We make use of DNA data in conjunction with morphological appearance and available information on species distribution to delimit the boundaries of the “loxurina” group species previously established based on morphology. A fragment of 635 base pairs within the mtDNA gene cytochrome oxidase I (COI) was analysed for seven species of the “loxurina group”. Phylogenetic relationships among the included taxa were inferred using maximum parsimony and maximum likelihood methods. Penaincisalia sigsiga (Bálint et al), P. cillutincarae (Draudt), P. atymna (Hewitson) and P. loxurina (C. Felder & R. Felder) were easily delimited as the morphological, geographic and molecular data were congruent. Penaincisalia ludovica (Bálint & Wojtusiak) and P. loxurina astillero (Johnson) represent the same entity and constitute a sub-species of P. loxurina. However, incongruence among morphological, genetic, and geographic data is shown in P. chachapoya (Bálint & Wojtusiak) and P. tegulina (Bálint et al). Our results highlight that an integrative approach is needed to clarify the taxonomy of these neotropical taxa, but more genetic and geographical studies are still required.
Resumo:
I propose a method to study interactional ironic humorous utterances in Spanish. In GRIALE research group consider this method can be applied to humorous ironic utterances in different textual genres, from the violation of conversational principles. Futhermore, we present the General Theory of Verbal Humor proposed by Attardo that it will be taken in our analysis. Therefore, I study irony and humor in examples of conversations from Peninsular Spanish real sample corpuses (COVJA, Corpus de conversaciones coloquiales [Corpus of Colloquial Conversations] and CREA, Corpus de Referencia del Español Actual [Reference Corpus of Present-Day Spanish]). In this article, I will focus on the application of this theory to humorous ironic statements which arise in conversation and examine the effects caused by them, which will additionally verify if irony and humor coexist in the same conversational exchange with a communicative aim and conversational strategies.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
Different types of land use are usually present in the areas adjacent to many shallow karst cavities. Over time, the increasing amount of potentially harmful matter and energy, of mainly anthropic origin or influence, that reaches the interior of a shallow karst cavity can modify the hypogeal ecosystem and increase the risk of damage to the Palaeolithic rock art often preserved within the cavity. This study proposes a new Protected Area status based on the geological processes that control these matter and energy fluxes into the Altamira cave karst system. Analysis of the geological characteristics of the shallow karst system shows that direct and lateral infiltration, internal water circulation, ventilation, gas exchange and transmission of vibrations are the processes that control these matter and energy fluxes into the cave. This study applies a comprehensive methodological approach based on Geographic Information Systems (GIS) to establish the area of influence of each transfer process. The stratigraphic and structural characteristics of the interior of the cave were determined using 3D Laser Scanning topography combined with classical field work, data gathering, cartography and a porosity–permeability analysis of host rock samples. As a result, it was possible to determine the hydrogeological behavior of the cave. In addition, by mapping and modeling the surface parameters it was possible to identify the main features restricting hydrological behavior and hence direct and lateral infiltration into the cave. These surface parameters included the shape of the drainage network and a geomorphological and structural characterization via digital terrain models. Geological and geomorphological maps and models integrated into the GIS environment defined the areas involved in gas exchange and ventilation processes. Likewise, areas that could potentially transmit vibrations directly into the cave were identified. This study shows that it is possible to define a Protected Area by quantifying the area of influence related to each transfer process. The combined maximum area of influence of all the processes will result in the new Protected Area. This area will thus encompass all the processes that account for most of the matter and energy carried into the cave and will fulfill the criteria used to define the Protected Area. This methodology is based on the spatial quantification of processes and entities of geological origin and can therefore be applied to any shallow karst system that requires protection.
Resumo:
In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach.