8 resultados para Edwin Cuthbert Hall Professor in Middle Eastern Archaeology at Sydney University
em Universidad de Alicante
Resumo:
New data on brachiopod assemblages recorded in the Eastern Subbetic area (Alicante, SE Spain) and attributed to the Early Bajocian (Humphriesianum Zone and/or immediately older) are provided. Eleven species have been distinguished and reported for the first time in the Subbetic domain of the Betic Cordillera. The description of the morphological evidences on each analysed taxa, especially in relation to their internal morphology, brings new implications in the systematics of the Middle Jurassic brachiopods. The analysis of faunistic affinity between the recorded assemblages and those from other palaeogeographic domains, shows that the Subbetic brachiopod fauna has a clear Mediterranean affinity, as proved by the different species belonging to the genera Striirhynchia, Septocrurella, Mondegia?, Karadagithyris, Linguithyris, Papodina?, Viallithyris?, and Zugmayeria?. It is also evidenced that the Early-Middle Jurassic transition in the Eastern Subbetic accounted, in qualitative terms, a remarkable interval of faunistic renewal in the brachiopod assemblages, strongly influenced by a complex tectonic and stratigraphic framework controlled by a period of intense extensional tectonics, globally framed in the evolution of the Atlantic Ocean.
Resumo:
Salpassa denotes the blessing of houses, land, and other belongings, carried out during Easter week and Resurrection (Easter) Sunday in the Valencia–Catalonia linguistic region of north-eastern Spain. Although it is now remembered mostly as a consecrating ceremony or a religious rite, recent field research has shown that a playful element, carried out by children through their songs and other activities, was also an important aspect of the traditional Salpassa.
Resumo:
Two-dimensional insulators with time-reversal symmetry can have two topologically different phases, the quantum spin Hall and the normal phase. The former is revealed by the existence of conducting edge states that are topologically protected. Here we show that the reaction to impurity, in bulk, is radically different in the two phases and can be used as a marker for the topological phase. Within the context of the Kane-Mele model for graphene, we find that strictly normalizable in-gap impurity states only occur in the quantum spin Hall phase and carry a dissipationless current whose chirality is determined by the spin and pseudospin of the residing electron.
Resumo:
We model the quantum Hall effect in heterostructures made of two gapped graphene stripes with different gaps, Δ1 and Δ2. We consider two main situations, Δ1=0,Δ2≠0, and Δ1=−Δ2. They are different in a fundamental aspect: only the latter features kink states that, when intervalley coupling is absent, are protected against backscattering. We compute the two-terminal conductance of heterostructures with channel length up to 430 nm, in two transport configurations, parallel and perpendicular to the interface. By studying the effect of disorder on the transport along the boundary, we quantify the robustness of kink states with respect to backscattering. Transport perpendicular to the boundary shows how interface states open a backscattering channel for the conducting edge states, spoiling the perfect conductance quantization featured by the homogeneously gapped graphene Hall bars. Our results can be relevant for the study of graphene deposited on hexagonal boron-nitride, as well as to model graphene with an interaction-driven gapped phase with two equivalent phases separated by a domain wall.
Resumo:
Six Paleogene-Aquitanian successions have been reconstructed in the Alicante area (eastern External Betic Zone). The lithofacies association evidences “catastrophic” syn-sedimentary tectonic processes consisting of slumps, mega-olisthostromes, “pillow-beds” and turbiditic deposits. This kind of sedimentation is related to unconformity surfaces delimiting sequence and para-sequence cycles in the stratigraphic record. The data compiled have enabled the reconstruction of the Paleogene-Aquitanian paleogeographic and geodynamic evolution of this sector of the External Betics. During the Eocene the sedimentary basin is interpreted as a narrow trough affected by (growth) folding related to blind thrust faulting with a source area from the north-western margin, while the southeastern margin remained inactive. During the Oligocene-Aquitanian, the sourcing margin becames the southeastern margin of the basin affected by a catastrophic tectonic. The activity of the margins is identified from specific sediment source areas for the platform-slope-trough system and from tectofacies analysis. The southeastern South Iberian Margin is thought to be closer to the Internal Betic Zone, which was tectonically pushing towards the South Iberian Margin. This pushing could generate a lateral progressive elimination of subbetic paleogeographic domains in the eastern Betics. This geodynamic frame could explain the development of such “catastrophic” tectono-sedimentary processes during the Late Oligocene-Early Miocene.
Resumo:
The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators. For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.
Resumo:
Skyrmions are topologically protected spin textures, characterized by a topological winding number N, that occur spontaneously in some magnetic materials. Recent experiments have demonstrated the capability to grow graphene on top Fe/Ir, a system that exhibits a two-dimensional skyrmion lattice. Here we show that a weak exchange coupling between the Dirac electrons in graphene and a two-dimensional skyrmion lattice withN = ±1 drives graphene into a quantum anomalous Hall phase, with a band gap in bulk, a Chern number C = 2N, and chiral edge states with perfect quantization of conductance G = 2N e2 h . Our findings imply that the topological properties of the skyrmion lattice can be imprinted in the Dirac electrons of graphene.
Resumo:
Background and Study Aim: Understanding injury incidence rates will be a great help with regards to preventing potential future damages. It is for this reason that this study suggests studying a large number of variables. The purpose of research is the relationship of events (empirical variables) that are usually taken into account in developing injury prevention programs during the battles and training in judo tournament. Material and methods: In this research project, 57 male judokas taking part in the Spanish National University Championship in 2009 were asked to complete a retrospective questionnaire. We analysed the following events: the most commonly injured body regions, the medical diagnosis, how and when the injury happened, the type of injury, the side of the body and the type of medical attention received. For the statistical analysis, we used the SPSS statistics programme to apply the Chi-square test in order to determine the significance levels for non-parametric tests from p<.05. Results: Significant differences were found in the most commonly injured body region, the shoulder/clavicle (p<.05), and in the most common diagnosis, the sprain (p<.05). Impact injuries (p<.05) are the most common and training (p<.05) is the most dangerous time. About the type of injury, 78.38% are new injuries (p<.05) and 69.05% affect the right hand side of the body (p<.05). Doctors are the most consulted specialists, but the physiotherapists obtained the best marks. Have been out due to injury for over 21 days 36.36% of the participants, but not for the entire season. Conclusions: The most common diagnosis in university student judokas coincides with those of elite judokas, with the sprain being the most common. University student judokas have a higher rate of shoulder/clavicle injuries, while professional judokas are prone to a higher rate of knee injuries. Training is the most common moment in which injuries occur, both in university student judokas and professional judokas. New injuries are the most common types of injuries in university student judokas and, while doctors are the most consulted specialists, the physiotherapists obtained the best marks.