8 resultados para EFFECTIVE TEMPERATURE SCALE
em Universidad de Alicante
Resumo:
Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
Resumo:
Los estudios referentes a las sensaciones térmicas son de gran interés y utilidad en diferentes sectores de la sociedad, máxime en la provincia Cienfuegos (Cuba) donde existe un alto potencial económico en continuo desarrollo. Es por eso que este trabajo tiene como objetivo caracterizar temporal y espacialmente las sensaciones térmicas en horarios extremos del día en la provincia Cienfuegos durante el período 1981-2010. Para ello se calcularon los índices bioclimáticos Temperatura Efectiva-TE y Temperatura Efectiva Equivalente-TEE los cuales resultan adecuados para evaluar las sensaciones térmicas de los cubanos aclimatados a las condiciones cálidas y húmedas. Como principales resultados se obtuvo que en la provincia, las mañanas de noviembre a abril son generalmente frescas mientras las tardes de ese período pueden ser confortables o calurosas. Esta última situación es común en las mañanas de mayo a octubre cambiando a calurosas o muy calurosas en horas de la tarde. Las mayores diferencias espaciales se encontraron entre el litoral sur oriental y la zona montañosa resaltando esta última por una permanencia de sensaciones frescas o confortables.
Resumo:
In relation to the current interest on gas storage demand for environmental applications (e.g., gas transportation, and carbon dioxide capture) and for energy purposes (e.g., methane and hydrogen), high pressure adsorption (physisorption) on highly porous sorbents has become an attractive option. Considering that for high pressure adsorption, the sorbent requires both, high porosity and high density, the present paper investigates gas storage enhancement on selected carbon adsorbents, both on a gravimetric and on a volumetric basis. Results on carbon dioxide, methane, and hydrogen adsorption at room temperature (i.e., supercritical and subcritical gases) are reported. From the obtained results, the importance of both parameters (porosity and density) of the adsorbents is confirmed. Hence, the densest of the different carbon materials used is selected to study a scale-up gas storage system, with a 2.5 l cylinder tank containing 2.64 kg of adsorbent. The scale-up results are in agreement with the laboratory scale ones and highlight the importance of the adsorbent density for volumetric storage performances, reaching, at 20 bar and at RT, 376 g l-1, 104 g l-1, and 2.4 g l-1 for CO2, CH4,and H2, respectively.
Resumo:
In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance for three different activated carbons obtained from olives stones by chemical activation followed by physical activation with CO2 at varying times, i.e. 20, 40 and 60 h. Kinetic and thermodynamic CO2 adsorption tests from simulated flue-gas at different temperature and CO2 pressure are carried out both in batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with CO2/N2 mixture) conditions. The textural characterization of the activated carbon samples shows a direct dependence of both micropore and ultramicropore volume on the activation time, hence AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that, when CO2 pressure is lower than 0.3 bar, the lower the activation time the higher CO2 adsorption capacity and a ranking ωeq(AC20)>ωeq(AC40)>ωeq(AC60) can be exactly defined when T= 293 K. This result can be likely ascribed to a narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of a flue-gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight that the adsorption of N2 on the synthesized AC samples can be considered negligible. Finally, the importance of a proper analysis of characterization data and adsorption experimental results is highlighted for a correct assessment of CO2 removal performances of activated carbons at different CO2 pressure and operating temperature.
Resumo:
Pd and bimetallic Ni50Pd50 nanoparticles protected by polyvinylpyrrolidone (PVP) have been synthesized by the reduction-by-solvent method and deposited on single wall carbon nanotubes (SWCNTs) to be tested as H2 sensors. The SWCNTs were deposited by drop casting from different suspensions. The Pd nanoparticles-based sensors show a very reproducible performance with good sensitivity and very low response times (few seconds) for different H2 concentrations, ranging from 0.2% to 5% vol. H2 in air at atmospheric pressure. The influence of the metal nanoparticle composition, the quality of SWCNTs suspension and the metal loading have been studied, observing that all these parameters play an important role in the H2 sensor performance. Evidence for water formation during the H2 detection on Pd nanoparticles has been found, and its repercussion on the behaviour of the assembled sensors is discussed. The sensor preparation procedure detailed in this work has proven to be simple and reproducible to prepare cost-effective and highly efficient H2 sensors that perform very well under real application conditions.
Resumo:
This article describes an effective procedure for reducing the water content of excess sludge production from a wastewater treatment plant by increasing its concentration and, as a consequence, minimizing the volume of sludge to be managed. It consists of a pre-dewatering sludge process, which is used as a preliminary step or alternative to the thickening. It is made up of two discontinuous sequential stages: the first is resettling and the second, filtration through a porous medium. The process is strictly physical, without any chemical additives or electromechanical equipment intervening. The experiment was carried out in a pilot-scale system, consisting of a column of sedimentation that incorporates a filter medium. Different sludge heights were tested over the filter to verify the influence of hydrostatic pressure on the various final concentrations of each stage. The results show that the initial sludge concentration may increase by more than 570% by the end of the process with the final volume of sludge being reduced in similar proportions and hydrostatic pressure having a limited effect on this final concentration. Moreover, the value of the hydrostatic pressure at which critical specific cake resistance is reached is established.
Resumo:
One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.
Resumo:
Recent advances in statistical downscaling have allowed the reconstruction of temperatures for the complete 1948–2011 period in a spatial resolution of 90 m and without gaps for the Valencian Community (Spain) and bordering areas. It presently enables analyses in this region, which allows the determination of recent temperature changes at subregional and local scales. The present work focuses on obtaining the thermicity index according to Rivas-Martínez, a well-known indicator of different thermotypes associated with bioclimatic horizons. The change in this index, which has happened in the region between 1948 and 2011, was calculated by generating fine-scale maps of the potential extension of different thermotypes. The results show a greater regression for the thermotypes in a finicolous position, e.g. Orotemperate, Supratemperate and Supramediterranean horizons, which herein indicate greater potential vulnerability in climate change. In the absence of, and given the need for, such fine-scale information, this work should be useful for specialized researchers to spatially limit the potentially most vulnerable biotopes to climate change.