10 resultados para EFFECTIVE FIELD-THEORY

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An electronic phase with coexisting magnetic and ferroelectric order is predicted for graphene ribbons with zigzag edges. The electronic structure of the system is described with a mean-field Hubbard model that yields results very similar to those of density functional calculations. Without further approximations, the mean-field theory is recasted in terms of a BCS wave function for electron-hole pairs in the edge bands. The BCS coherence present in each spin channel is related to spin-resolved electric polarization. Although the total electric polarization vanishes, due to an internal phase locking of the BCS state, strong magnetoelectric effects are expected in this system. The formulation naturally accounts for the two gaps in the quasiparticle spectrun, Δ0 and Δ1, and relates them to the intraband and interband self-energies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los análisis de sensibilidad son una herramienta importante para comprender el funcionamiento de los modelos ecológicos, así como para identificar los parámetros más importantes en su funcionamiento. Además, los análisis de sensibilidad pueden utilizarse para diseñar de forma más efectiva planes de muestreo de campo dirigidos a calibrar los modelos ecológicos. En los estudios de ecosistemas forestales, el análisis cuantitativo de la parte subterránea es mucho más costoso y complicado que el estudio de la parte aérea, en especial el estudio de la dinámica de producción y descomposición de raíces gruesas y finas de los árboles. En este trabajo se muestra un ejemplo de análisis de sensibilidad del modelo forestal FORECAST a parámetros que definen la biomasa, longevidad y concentración de nitrógeno en las raíces de los árboles. El modelo se calibró para simular dos rodales de pino silvestre (Pinus sylvestris) en los Pirineos de Navarra. Los resultados indican que la tasa de renovación de raíces finas es el parámetro más influyente en las estimaciones del modelo de crecimiento de los árboles, seguida de la concentración de N en las mismas, siendo la relación biomasa subterránea/total el parámetro al cual el modelo es menos sensible. Además, el modelo es más sensible a los parámetros que definen el componente subterráneo de la biomasa arbórea cuando simula un sitio de menor capacidad productiva y mayor limitación por nutrientes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpass the working wavelength by nearly two orders of magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N noninteracting sites connecting both of them. The interdot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of a small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the interdot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dot spins by the spin in the finite chain at the Fermi level. As the coupling to the interdot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multiconfigurational Lanczos calculations and finite-U slave-boson mean-field theory at T=0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the optical properties of nanolayered metal-dielectric lattices. At subwavelength regimes, the periodic array of metallic nanofilms demonstrates nonlocality-induced double refraction, conventional positive and as well as negative. In particular, we report on energy-flow considerations concerning both refractive behaviors concurrently. Numerical simulations provide transmittance of individual beams in Ag-TiO2 metamaterials under different configurations. In regimes of the effective-medium theory predicting elliptic dispersion, negative refraction may be stronger than the expected positive refraction.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A united atom force field is empirically derived by minimizing the difference between experimental and simulated crystal cells and melting temperatures for eight compounds representative of organic electronic materials used in OLEDs and other devices: biphenyl, carbazole, fluorene, 9,9′-(1,3-phenylene)bis(9H-carbazole)-1,3-bis(N-carbazolyl)benzene (mCP), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP), phenazine, phenylcarbazole, and triphenylamine. The force field is verified against dispersion-corrected DFT calculations and shown to also successfully reproduce the crystal structure for two larger compounds employed as hosts in phosphorescent and thermally activated delayed fluorescence OLEDs: N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPD), and 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI). The good performances of the force field coupled to the large computational savings granted by the united atom approximation make it an ideal choice for the simulation of the morphology of emissive layers for OLED materials in crystalline or glassy phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A density-functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density-functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie temperature by additional confinement of the holes in a δ-doped layer of Mn by a quantum well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arranged in controlled orientations. This light shaping process, besides being of theoretical interest, is expected to open up a wide range of broadband application possibilities.