9 resultados para EDGE FAULTS

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low-energy excitations, which allows us to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin–orbit coupling changes graphene, in principle, into a two-dimensional topological insulator, also known as quantum spin Hall insulator. One of the expected consequences is the existence of spin-filtered edge states that carry dissipationless spin currents and undergo no backscattering in the presence of non-magnetic disorder, leading to quantization of conductance. Whereas, due to the small size of spin–orbit coupling in graphene, the experimental observation of these remarkable predictions is unlikely, the theoretical understanding of these spin-filtered states is shedding light on the electronic properties of edge states in other two-dimensional quantum spin Hall insulators. Here we review the effect of a variety of perturbations, like curvature, disorder, edge reconstruction, edge crystallographic orientation, and Coulomb interactions on the electronic properties of these spin filtered states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper submitted to the XVI Sitges Conference on Statistical Mechanics, Sitges, Barcelona, Spain, 7-11 June 1999.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims. We present the third article in a series of papers focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods. We physically characterized the cluster using JHKS near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared K-band spectroscopy, following the methodology presented in the first article of the series. Results. Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0 V. According to our analysis, this young cluster (1.0 Myr < age < 5.0 Myr) is located at a distance of 11+5-6 kpc, and we estimate a lower limit for the cluster total mass of (2.8+1.6-1.4) · 103 M⊙. It is likely that the cluster contains even earlier and more massive stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirements for edge protection systems on most sloped work surfaces (class C, according to EN 13374-2013 code) in construction works are studied in this paper. Maximum deceleration suffered by a falling body and maximum deflection of the protection system were analyzed through finite-element models and confirmed through full-scale experiments. The aim of this work is to determine which value for deflection system entails a safe deceleration for the human body. This value is compared with the requirements given by the current version of EN 13374-2013. An additional series of experiments were done to determine the acceleration linked to minimum deflection required by code (200 mm) during the retention process. According to the obtained results, a modification of this value is recommended. Additionally, a simple design formula for this falling protection system is proposed as a quick tool for the initial steps of design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of a perpendicular magnetic field to charge neutral graphene is expected to result in a variety of broken symmetry phases, including antiferromagnetic, canted, and ferromagnetic. All these phases open a gap in bulk but have very different edge states and noncollinear spin order, recently confirmed experimentally. Here we provide an integrated description of both edge and bulk for the various magnetic phases of graphene Hall bars making use of a noncollinear mean field Hubbard model. Our calculations show that, at the edges, the three types of magnetic order are either enhanced (zigzag) or suppressed (armchair). Interestingly, we find that preformed local moments in zigzag edges interact with the quantum spin Hall like edge states of the ferromagnetic phase and can induce backscattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The independent predictions of edge ferromagnetism and the quantum spin Hall phase in graphene have inspired the quest of other two-dimensional honeycomb systems, such as silicene, germanene, stanene, iridates, and organometallic lattices, as well as artificial superlattices, all of them with electronic properties analogous to those of graphene, but a larger spin-orbit coupling. Here, we study the interplay of ferromagnetic order and spin-orbit interactions at the zigzag edges of these graphenelike systems. We find an in-plane magnetic anisotropy that opens a gap in the otherwise conducting edge channels that should result in large changes of electronic properties upon rotation of the magnetization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The edges of graphene and graphene like systems can host localized states with evanescent wave function with properties radically different from those of the Dirac electrons in bulk. This happens in a variety of situations, that are reviewed here. First, zigzag edges host a set of localized non-dispersive state at the Dirac energy. At half filling, it is expected that these states are prone to ferromagnetic instability, causing a very interesting type of edge ferromagnetism. Second, graphene under the influence of external perturbations can host a variety of topological insulating phases, including the conventional quantum Hall effect, the quantum anomalous Hall (QAH) and the quantum spin Hall phase, in all of which phases conduction can only take place through topologically protected edge states. Here we provide an unified vision of the properties of all these edge states, examined under the light of the same one orbital tight-binding model. We consider the combined action of interactions, spin–orbit coupling and magnetic field, which produces a wealth of different physical phenomena. We briefly address what has been actually observed experimentally.