4 resultados para Dynamic Power Management
em Universidad de Alicante
Resumo:
Static stretching prior to sport has been shown to decrease force production in comparison to the increasing popularity of dynamic warm-up methods. However some athletes continue to use a bout of static stretching following dynamic methods. The purpose of this study was to investigate the effects on speed, agility and power following a period of additional static stretching following a dynamic warm-up routine. Twenty-five male University students who participated in team sports performed two warm-up protocols concentrating on the lower body one week apart through a randomised cross over design. The dynamic warm-up (DW) protocol used a series of specific progressive exercises lasting 10 minutes over a distance of 20m. The dynamic warm-up plus static stretching (DWS) protocol used the same DW protocol followed by a 5 minute period during which 7 muscle groups were stretched. Following each warm-up the subjects performed a countermovement vertical jump, 20m sprint and Illinois agility test, 1 minute apart. The results demonstrated no significant differences in speed, agility and jump performance following the two protocols DW and DWS. The study concludes that performing static stretching following a dynamic warm-up prior to performance does not significantly affect speed, agility and vertical jump performance.
Resumo:
Information technologies (IT) currently represent 2% of CO2 emissions. In recent years, a wide variety of IT solutions have been proposed, focused on increasing the energy efficiency of network data centers. Monitoring is one of the fundamental pillars of these systems, providing the information necessary for adequate decision making. However, today’s monitoring systems (MSs) are partial, specific and highly coupled solutions. This study proposes a model for monitoring data centers that serves as a basis for energy saving systems, offered as a value-added service embedded in a device with low cost and power consumption. The proposal is general in nature, comprehensive, scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs of changing and dynamic environments. Further, a prototype of the system has been implemented in several devices, which has allowed validation of the proposal in addition to identification of the minimum hardware profile required to support the model.
Resumo:
Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.
Resumo:
Social networking apps, sites and technologies offer a wide range of opportunities for businesses and developers to exploit the vast amount of information and user-generated content produced through social networking. In addition, the notion of second screen TV usage appears more influential than ever, with viewers continuously seeking further information and deeper engagement while watching their favourite movies or TV shows. In this work, the authors present SAM, an innovative platform that combines social media, content syndication and targets second screen usage to enhance media content provisioning, renovate the interaction with end-users and enrich their experience. SAM incorporates modern technologies and novel features in the areas of content management, dynamic social media, social mining, semantic annotation and multi-device representation to facilitate an advanced business environment for broadcasters, content and metadata providers, and editors to better exploit their assets and increase their revenues.