3 resultados para Distortion of the currents

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Self-image is important in the behaviour and lifestyle of children and adolescents. Analysing the self-image they have and the factors that might influence their distortion, can be used to prevent problems of obesity and anorexia. The main objective of present publication was to analyse the risk factors that may contribute to self-image distortion. Material and Methods: A descriptive survey study was conducted among 659 children and adolescents in two social classes (low and medium-high), measuring height and weight, calculating BMI percentile for age and gender. Body image and self-perception were registered. Results: The percentage of overweight-obesity is higher in scholars (41.8% boys, 28.7% girls) than in adolescents (30.1% and 22.2% respectively), with no difference between socioeconomic classes. The multinomial logistic regression analysis gives a risk of believing thinner higher (p=0.000) among boys OR=2.9(95%CI:1.43-3.37), school (p=0.000) OR=2.42(95%CI:1.56-3.76) and much lower (p=0.000) between normally nourished OR=0.08(95%CI:0.05-0.13), with no differences according to socioeconomic status. The risk of believing fatter is lower (p=0.000) between boys OR=0.28(95%CI:0.14-0.57), school(p=0.072) OR=0.54(95%CI:0.27-1.6), and much higher among underweight (p=0.000) OR=9x108(95% CI:4x108-19x108). Conclusions: Are risk factors of believing thinner: males, being in a group of schoolchildren and overweight-obesity. Conversely, are risk factors of believing fatter: females, teen and above all, be thin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2013 April a new magnetar, SGR 1745−2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the centre of the Milky Way, Sagittarius A*. SGR 1745−2900 has a surface dipolar magnetic field of ∼2 × 1014 G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity LX ∼ 5 × 1035 erg s−1. Here we report on the long-term Chandra (25 observations) and XMM–Newton (eight observations) X-ray monitoring campaign of SGR 1745−2900 from the onset of the outburst in 2013 April until 2014 September. This unprecedented data set allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ∼2 around 2013 June, and reveals that a further increase occurred between 2013 October 30 and 2014 February 21. We find that the period derivative changed from 6.6 × 10−12 to 3.3 × 10−11 s s−1 in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ∼200 d of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.