3 resultados para Dirichlet L-function

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows, by means of Kronecker’s theorem, the existence of infinitely many privileged regions called r -rectangles (rectangles with two semicircles of small radius r ) in the critical strip of each function Ln(z):= 1−∑nk=2kz , n≥2 , containing exactly [Tlogn2π]+1 zeros of Ln(z) , where T is the height of the r -rectangle and [⋅] represents the integer part.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If one has a distribution of words (SLUNs or CLUNS) in a text written in language L(MT), and is adjusted one of the mathematical expressions of distribution that exists in the mathematical literature, some parameter of the elected expression it can be considered as a measure of the diversity. But because the adjustment is not always perfect as usual measure; it is preferable to select an index that doesn't postulate a regularity of distribution expressible for a simple formula. The problem can be approachable statistically, without having special interest for the organization of the text. It can serve as index any monotonous function that has a minimum value when all their elements belong to the same class, that is to say, all the individuals belong to oneself symbol, and a maximum value when each element belongs to a different class, that is to say, each individual is of a different symbol. It should also gather certain conditions like they are: to be not very sensitive to the extension of the text and being invariant to certain number of operations of selection in the text. These operations can be theoretically random. The expressions that offer more advantages are those coming from the theory of the information of Shannon-Weaver. Based on them, the authors develop a theoretical study for indexes of diversity to be applied in texts built in modeling language L(MT), although anything impedes that they can be applied to texts written in natural languages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las series de potencias constituyeron una herramienta esencial manejada por Weierstrass en el siglo XIX dentro de su programa de aritmetización del Análisis Matemático. Más tarde, a principios del siglo XX, en conexión con la función zeta de Riemann se inició un estudio intensivo de las series de Dirichlet, que constituyen el objeto fundamental de este trabajo fin de grado. En lo que a la estructura del trabajo se refiere, se empieza con una breve presentación histórica y posteriormente se procede a ilustrar el concepto de serie de Dirichlet, introduciendo sus propiedades inmediatas, como bien pueden ser la convergencia y la analiticidad de la forma más general posible, para luego centrarnos en el caso de las series de Dirichlet clásicas u ordinarias, haciendo un inciso en su estructura algebraica existente y en los productos de Euler. Finalmente y como no podía ser de otra forma, cerramos este estudio con una introducción a las características de la ya mencionada función zeta de Riemann y la archiconocida hipótesis de Riemann. Se adjuntan además tres anexos con los resultados necesarios para la correcta evolución del trabajo.