4 resultados para Direct Sum of Cyclics
em Universidad de Alicante
Resumo:
The paper provides interesting evidences that a low softening point isotropic petroleum pitch can be used as a good carbon precursor for the preparation of activated carbons. The activation is carried out by KOH and/or NaOH and the resulting activated carbons present well developed porosity. Such hydroxide activations can be done directly on the pristine petroleum pitch (P) or on the pitch that has been submitted to an air stabilisation followed by a N2 heat treatment (TAN). In general, KOH activation produces better results than NaOH, both in terms of porosity and yield, the results obtained for the activation of TAN being impressive because of the good porosity developments and high yields reached. The different treatments carried out over the petroleum pitch precursor clearly show that they significantly influence the extent of microporosity development. This is due to different changes occurring in the porous structure of the precursor as a function of the treatment carried out. The efficiency of the activation process increases as the mesophase content of the precursor decreases, as well as the mesophase formation during the activation process is avoided.
Resumo:
A general synthesis of highly substituted pyrrolizidines can be performed by a multicomponent 1,3-dipolar cycloaddition using proline ester hydrochlorides, aldehydes and dipolarophiles, at room temperature without catalysts or in the presence of AgOAc (5 mol %). In the case of (2S,4R)-4-hydroxyproline derivatives it is possible to obtain enantioenriched pyrrolizidines with high control of the regio- and diastereoselectivity affording the adducts 2,4-trans-2,5-trans according to an endo-approach and a S-dipole geometry of the in situ generated azomethine ylide. For proline esters a similar regioselectivity and endo-diastereoselectivity are observed when the dipole promotes an α-attack. However, when ethyl glyoxylate is used as aldehyde component the γ-attack of the S-ylide takes place preferentially giving rise the opposite regioselectivity for acrylic dipolarophiles, being crucial the role of silver acetate. In this case, the exo-adducts with a 2,3-cis-2,5-trans relative configuration are diastereoselectively obtained. In addition, computational studies have also been carried out to shed light on the origins of the diastereo- and regioselectivity observed for the described 1,3-dipolar cycloadditions.
Resumo:
Palladium impregnated on magnetite is an efficient, cheap and easy to prepare catalyst for the direct arylation of heterocycles. Good yields are afforded under relatively mild conditions and a broad substrate scope is evident. The catalyst is regioselective in many cases, affording arylated products, at the C2- or C3-position (depending of the heterocycle used). The methodology can be extended to prepare chromenes through an intramolecular direct arylation reaction. Some evidence is provided for two catalyst deactivation pathways, which prevents efficient recycling.
Resumo:
Copper nanoparticles (CuNPs) supported on ZnO have been shown to effectively catalyze the direct synthesis of β-ketophosphonates from alkenes or alkynes, and that of vinyl phosphonates from alkynes and diethylphosphite, under air and in the absence of any additive or ligand. When using alkynes as starting materials, the selectivity proved to be dependent on the nature of the alkyne. Thus, alkynes conjugated with an aromatic ring or a carbon–carbon double bond gave β-ketophosphonates as the main reaction products, whereas aliphatic alkynes or alkynes conjugated with a carbonyl group led to the formation of the corresponding vinyl phosphonates.