5 resultados para Dilute magnetic semiconductors
em Universidad de Alicante
Resumo:
Ferromagnetism is predicted in undoped diluted magnetic semiconductors illuminated by intense sub-band-gap laser radiation . The mechanism for photoinduced ferromagnetism is coherence between conduction and valence bands induced by the light which leads to an optical exchange interaction. The ferromagnetic critical temperature TC depends both on the properties of the material and on the frequency and intensity of the laser and could be above 1K.
Resumo:
We consider dilute magnetic doping in the surface of a three dimensional topological insulator where a two dimensional Dirac electron gas resides. We find that exchange coupling between magnetic atoms and the Dirac electrons has a strong and peculiar effect on both. First, the exchange-induced single ion magnetic anisotropy is very large and favors off-plane orientation. In the case of a ferromagnetically ordered phase, we find a colossal magnetic anisotropy energy, of the order of the critical temperature. Second, a persistent electronic current circulates around the magnetic atom and, in the case of a ferromagnetic phase, around the edges of the surface.
Resumo:
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. By using a mean-field Hubbard model, we study the appearance of magnetic textures associated with removing a single atom (vacancy) and multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based on the Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin S of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance, there is a maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
Resumo:
The notion of artificial atom relies on the capability to change the number of carriers one by one in semiconductor quantum dots, and the resulting changes in their electronic structure. Organic molecules with transition metal atoms that have a net magnetic moment and display hysteretic behaviour are known as single molecule magnets (SMM). The fabrication of CdTe quantum dots chemically doped with a controlled number of Mn atoms and with a number of carriers controlled either electrically or optically paves the way towards a new concept in nanomagnetism: the artificial single molecule magnet. Here we study the magnetic properties of a Mn-doped CdTe quantum dot for different charge states and show to what extent they behave like a single molecule magnet.
Resumo:
A density-functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density-functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie temperature by additional confinement of the holes in a δ-doped layer of Mn by a quantum well.