4 resultados para Digestive enzymes

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts. To reach this goal, the researcher may utilize different tools. For example, amination of the enzyme surface produces an alteration of the isoelectric point of the protein along with its chemical reactivity (primary amino groups are the most widely used to obtain the reaction of the enzyme with surfaces, chemical modifiers, etc.) and even its “in vivo” behavior. This review will show some examples of chemical (mainly modifying the carboxylic groups using the carbodiimide route), physical (using polycationic polymers like polyethyleneimine) and genetic amination of the enzyme surface. Special emphasis will be put on cases where the amination is performed to improve subsequent protein modifications. Thus, amination has been used to increase the intensity of the enzyme/support multipoint covalent attachment, to improve the interaction with cation exchanger supports or polymers, or to promote the formation of crosslinkings (both intra-molecular and in the production of crosslinked enzyme aggregates). In other cases, amination has been used to directly modulate the enzyme properties (both in immobilized or free form). Amination of the enzyme surface may also pursue other goals not related to biocatalysis. For example, it has been used to improve the raising of antibodies against different compounds (both increasing the number of haptamers per enzyme and the immunogenicity of the composite) or the ability to penetrate cell membranes. Thus, amination may be a very powerful tool to improve the use of enzymes and proteins in many different areas and a great expansion of its usage may be expected in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, the increase in the use of artificial fertilizers and the disposal of industrial wastes have been the main factors responsible for the progressive increase in nitrate and nitrite levels in groundwater and soil. A variety of analytical strategies have been developed for nitrate and nitrite detection but electrochemical biosensors, which are simple, cheap, easily miniaturized and suitability for real-time detection, are proved to be a powerful tool. Various types of biosensors based on the use of whole cells or on the immobilization of denitrification enzymes have been developed, but their use is limited in environmental analysis under extreme conditions such as brines, acidic or basic wastewaters, salted soils, etc. Extremophilic denitrifying microorganism are good candidates for the development of new nitrate and nitrite biosensors and, in particular, haloarchaeal based biosensors would have advantages over bacterial based biosensors since the microorganisms and the purified denitrifying enzymes tolerate a wide range of temperature and salinity. This work summarizes new highlights on the potential uses of denitrifying haloarchaeal enzymes to make enzyme-based biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, we detail the efforts performed to couple the purification and the immobilization of industrial enzymes in a single step. The use of antibodies, the development of specific domains with affinity for some specific supports will be revised. Moreover, we will discuss the use of domains that increase the affinity for standard matrices (ionic exchangers, silicates). We will show how the control of the immobilization conditions may convert some unspecific supports in largely specific ones. The development of tailor-made heterofunctional supports as a tool to immobilize–stabilize–purify some proteins will be discussed in deep, using low concentration of adsorbent groups and a dense layer of groups able to give an intense multipoint covalent attachment. The final coupling of mutagenesis and tailor made supports will be the last part of the review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immobilization and purification of enzymes are usual requirements for their industrial use. Both purification and immobilization have a common factor: they use a solid activated support. Using a support for enzyme purification means having mild conditions for enzyme release and a selective enzyme–support interaction is interesting. When using a support for immobilization, however, enzyme desorption is a problem. The improvement of enzyme features through immobilization is a usual objective (e.g., stability, selectivity). Thus, a support designed for enzyme purification and a support designed for enzyme immobilization may differ significantly. In this review, we will focus our attention on the requirements of a support surface to produce the desired objectives. The ideal physical properties of the matrix, the properties of the introduced reactive groups, the best surface activation degree to reach the desired objective, and the properties of the reactive groups will be discussed.