2 resultados para Differencial and integral calculus teaching
em Universidad de Alicante
Resumo:
The adaptation of the Spanish University to the European Higher Education Area (EEES in Spanish) demands the integration of new tools and skills that would make the teaching- learning process easier. This adaptation involves a change in the evaluation methods, which goes from a system where the student was evaluated with a final exam, to a new system where we include a continuous evaluation in which the final exam may represent at most 50% in the vast majority of the Universities. Devising a new and fair continuous evaluation system is not an easy task to do. That would mean a student’s’ learning process follow-up by the teachers, and as a consequence an additional workload on existing staff resources. Traditionally, the continuous evaluation is associated with the daily work of the student and a collection of the different marks partly or entirely based on the work they do during the academic year. Now, small groups of students and an attendance control are important aspects to take into account in order to get an adequate assessment of the students. However, most of the university degrees have groups with more than 70 students, and the attendance control is a complicated task to perform, mostly because it consumes significant amounts of staff time. Another problem found is that the attendance control would encourage not-interested students to be present at class, which might cause some troubles to their classmates. After a two year experience in the development of a continuous assessment in Statistics subjects in Social Science degrees, we think that individual and periodical tasks are the best way to assess results. These tasks or examinations must be done in classroom during regular lessons, so we need an efficient system to put together different and personal questions in order to prevent students from cheating. In this paper we provide an efficient and effective way to elaborate random examination papers by using Sweave, a tool that generates data, graphics and statistical calculus from the software R and shows results in PDF documents created by Latex. In this way, we will be able to design an exam template which could be compiled in order to generate as many PDF documents as it is required, and at the same time, solutions are provided to easily correct them.
Resumo:
We report on an outburst of the high mass X-ray binary 4U 0115+634 with a pulse period of 3.6 s in 2008 March/April as observed with RXTE and INTEGRAL. During the outburst the neutron star’s luminosity varied by a factor of 10 in the 3–50 keV band. In agreement with earlier work we find evidence of five cyclotron resonance scattering features at ~10.7, 21.8, 35.5, 46.7, and 59.7 keV. Previous work had found an anticorrelation between the fundamental cyclotron line energy and the X-ray flux. We show that this apparent anticorrelation is probably due to the unphysical interplay of parameters of the cyclotron line with the continuum models used previously, e.g., the negative and positive exponent power law (NPEX). For this model, we show that cyclotron line modeling erroneously leads to describing part of the exponential cutoff and the continuum variability, and not the cyclotron lines. When the X-ray continuum is modeled with a simple exponentially cutoff power law modified by a Gaussian emission feature around 10 keV, the correlation between the line energy and the flux vanishes, and the line parameters remain virtually constant over the outburst. We therefore conclude that the previously reported anticorrelation is an artifact of the assumptions adopted in the modeling of the continuum.