5 resultados para Diesel, ultrafine particles, emissions, diesel fuel, sulphur
em Universidad de Alicante
Resumo:
PCDD/F emissions from three light-duty diesel vehicles–two vans and a passenger car–have been measured in on-road conditions. We propose a new methodology for small vehicles: a sample of exhaust gas is collected by means of equipment based on United States Environmental Protection Agency (U.S. EPA) method 23A for stationary stack emissions. The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured. Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were done during the first 10 minutes and the following 60 minutes of the run to assess the effect of the engine temperature on PCDD/F emissions. The emission factors obtained for the vans varied from 1800 to 8400 pg I-TEQ/Nm3 for a 2004 model year van and 490-580 pg I-TEQ/Nm3 for a 2006 model year van. Regarding the passenger car, one run was done in the presence of a catalyst and another without, obtaining emission factors (330-880 pg I-TEQ/Nm3) comparable to those of the modern van. Two other tests were carried out on a power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm3. All the results are discussed and compared with literature.
Resumo:
CuO/ceria-zirconia catalysts have been prepared, deeply characterised (N2 adsorption–desorption isotherms at −196 °C, XRD, Raman spectroscopy, XPS, TEM and H2-TPR) and tested for NO oxidation to NO2 in TPR conditions, and for soot combustion at mild temperature (400 °C) in a NOx/O2 stream. The behaviour has been compared to that of a reference Pt/alumina commercial catalyst. The ceria-zirconia support was prepared by the co-precipitation method, and different amounts of copper (0.5, 1, 2, 4 and 6 wt%) were loaded by incipient wetness impregnation. The results revealed that copper is well-dispersed onto the ceria-zirconia support for the catalysts with low copper loading and CuO particles were only identified by XRD in samples with 4 and 6% of copper. A very low loading of copper increases significantly the activity for the NO oxidation to NO2 with regard to the ceria-zirconia support and an optimum was found for a 4% CuO/ceria-zirconia composition, showing a very high activity (54% at 348 °C). The soot combustion rate at 400 °C obtained with the 2% CuO/ceria-zirconia catalyst is slightly lower to that of 1% Pt/alumina in terms of mass of catalyst but higher in terms of price of catalyst.
Resumo:
The active phase Ce0.5Pr0.5O2 has been loaded on commercial substrates (SiC DPF and cordierite honeycomb monolith) to perform DPF regeneration experiments in the exhaust of a diesel engine. Also, a powder sample has been prepared to carry out soot combustion experiments at laboratory. Experiments performed in the real diesel exhaust demonstrated the catalytic activity of the Ce–Pr mixed oxide for the combustion of soot, lowering the DPF regeneration temperature with regard to a counterpart catalyst-free DPF. The temperature for active regeneration of the Ce0.5Pr0.5O2-containing DPF when the soot content is low is in the range of 500–550 °C. When the Ce0.5Pr0.5O2-containing DPF is saturated with a high amount of soot, pressure drop and soot load at the filter reach equilibrium at around 360 °C under steady state engine operation due to passive regeneration. The uncoated DPF reached this equilibrium at around 440 °C. Comparing results at real exhaust with those at laboratory allow concluding that the Ce0.5Pr0.5O2-catalysed soot combustion in the real exhaust is not based on the NO2-assisted mechanism but is most likely occurring by the active oxygen-based mechanism.
Resumo:
This work presents a comparative study between the catalytic performance of the 2% CuO/ceria-zirconia powder catalyst and the same catalyst supported on silicon carbide DPF (Diesel Particulate Filter) towards NO oxidation reaction and soot combustion reaction. The ceria-zirconia catalyst was prepared by the co-precipitation method and 2 wt% copper was incorporated by the incipient wetness impregnation method. The catalyst was incorporated onto the ceramic support using a simple and organic solvent-free procedure by a simply dipping the DPF into an aqueous solution of the catalyst. The powder catalyst has been characterized using N2 adsorption at −196 °C, XRD and Raman Spectroscopy; whereas the catalytic coating morphology has been evaluated by SEM and the mechanical stability by an adherence test. Both catalyst configurations were tested for NO oxidation to NO2 and for soot combustion under NOx/O2. The results revealed that incorporation of the very active copper/ceria-zirconia catalyst onto SiC-DPF has been successfully achieved by a simple coating procedure. Furthermore, the catalytic coating has shown suitable mechanical, chemical and thermal stability. A satisfactory catalytic performance of the catalytic-coated filter was reached towards the NO oxidation reaction. Moreover, it was proved that the catalytic coating is stable and the corresponding coated DPF can be reused for several cycles of NO oxidation without a significant decrease in its activity. Finally, it was verified that the loose-contact mode is a good choice to simulate the catalytic performance of this active phase in a real diesel particulate filter.