4 resultados para Diamond nanoparticle
em Universidad de Alicante
Resumo:
Boron-doped diamond electrodes have emerged as anodic material due to their high physical, chemical and electrochemical stability. These characteristics make it particularly interesting for electrochemical wastewater treatments and especially due to its high overpotential for the Oxygen Evolution Reaction. Diamond electrodes present the maximum efficiency in pollutant removal in water, just limited by diffusion-controlled electrochemical kinetics. Results are presented for the elimination of benzoic acid and for the electrochemical treatment of synthetic tannery wastewater. The results indicate that diamond electrodes exhibit the best performance for the removal of total phenols, COD, TOC, and colour.
Resumo:
Supported iron oxide nanoparticles have been incorporated onto hierarchical zeolites by microwave-assisted impregnation and mechanochemical grinding. Nanoparticle-functionalised porous zeolites were characterised by a number of analytical techniques such as XRD, N2 physisorption, TEM, and surface acidity measurements. The catalytic activities of the synthesised nanomaterials were investigated in an alkylation reaction. The results pointed to different species with varying acidity and accessibility in the materials, which provided essentially different catalytic activities in the alkylation of toluene with benzyl chloride under microwave irradiation, selected as the test reaction.
Resumo:
Diamond/metal composites are very attractive materials for electronics because their excellent thermal properties make them suitable for use as heat sink elements in multifunctional electronic packaging systems. To enlarge the potential applications of these composites, current efforts are mainly focused on investigating different ways to improve the contact between metal and diamond. In the present work, a theoretical study has been carried out to determine the differences between the interfacial thermal conductance of aluminum/diamond and aluminum/graphite interfaces. Additionally, diamond particles were surface modified with oxygen to observe how it affects the quality of the diamond surface. The characterization of the surface of diamonds has been performed using different surface analysis techniques, especially x-ray photoelectron spectroscopy and temperature-programmed desorption.
Resumo:
A new design route is proposed in order to fabricate aluminum matrix diamond-containing composite materials with optimized values of thermal conductivity (TC) for thermal management applications. The proper size ratio and proportions of particulate diamond–diamond and diamond–SiC bimodal mixtures are selected based on calculations with predictive schemes, which combine two main issues: (i) the volume fraction of the packed particulate mixtures, and (ii) the influence of different types of particulates (with intrinsically different metal/reinforcement interfacial thermal conductances) on the overall thermal conductivity of the composite material. The calculated results are validated by comparison with measurements on composites fabricated by gas pressure infiltration of aluminum into preforms of selected compositions of particle mixtures. Despite the relatively low quality (low price) of the diamond particles used in this work, outstanding values of TC are encountered: a maximum of 770 W/m K for Al/diamond–diamond and values up to 690 W/m K for Al/diamond–SiC.